skip to main content


Title: Bayesian Tracking of Video Graphs Using Joint Kalman Smoothing and Registration
Graph-based representations are becoming increasingly popular for representing and analyzing video data, especially in object tracking and scene understanding applications. Accordingly, an essential tool in this approach is to generate statistical inferences for graphical time series associated with videos. This paper develops a Kalman-smoothing method for estimating graphs from noisy, cluttered, and incomplete data. The main challenge here is to find and preserve the registration of nodes (salient detected objects) across time frames when the data has noise and clutter due to false and missing nodes. First, we introduce a quotient-space representation of graphs that incorporates temporal registration of nodes, and we use that metric structure to impose a dynamical model on graph evolution. Then, we derive a Kalman smoother, adapted to the quotient space geometry, to estimate dense, smooth trajectories of graphs. We demonstrate this framework using simulated data and actual video graphs extracted from the Multiview Extended Video with Activities (MEVA) dataset. This framework successfully estimates graphs despite the noise, clutter, and missed detections.  more » « less
Award ID(s):
2143150 1955230
NSF-PAR ID:
10347249
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
European Conference on Computer Vision
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Avidan, S. ; Brostow, G. ; Cissé, M. ; Farinella. G.M. ; Hassner, T. (Ed.)
    Graph-based representations are becoming increasingly popular for representing and analyzing video data, especially in object tracking and scene understanding applications. Accordingly, an essential tool in this approach is to generate statistical inferences for graphical time series associated with videos. This paper develops a Kalman-smoothing method for estimating graphs from noisy, cluttered, and incomplete data. The main challenge here is to find and preserve the registration of nodes (salient detected objects) across time frames when the data has noise and clutter due to false and missing nodes. First, we introduce a quotient-space representation of graphs that incorporates temporal registration of nodes, and we use that metric structure to impose a dynamical model on graph evolution. Then, we derive a Kalman smoother, adapted to the quotient space geometry, to estimate dense, smooth trajectories of graphs. We demonstrate this framework using simulated data and actual video graphs extracted from the Multiview Extended Video with Activities (MEVA) dataset. This framework successfully estimates graphs despite the noise, clutter, and missed detections. 
    more » « less
  2. Avidan, S. (Ed.)
    Graph-based representations are becoming increasingly popular for representing and analyzing video data, especially in object tracking and scene understanding applications. Accordingly, an essential tool in this approach is to generate statistical inferences for graphical time series associated with videos. This paper develops a Kalman-smoothing method for estimating graphs from noisy, cluttered, and incomplete data. The main challenge here is to find and preserve the registration of nodes (salient detected objects) across time frames when the data has noise and clutter due to false and missing nodes. First, we introduce a quotient-space representation of graphs that incorporates temporal registration of nodes, and we use that metric structure to impose a dynamical model on graph evolution. Then, we derive a Kalman smoother, adapted to the quotient space geometry, to estimate dense, smooth trajectories of graphs. We demonstrate this framework using simulated data and actual video graphs extracted from the Multiview Extended Video with Activities (MEVA) dataset. This framework successfully estimates graphs despite the noise, clutter, and missed detections. 
    more » « less
  3. Graphs/Networks are common in real-world applications where data have rich content and complex relationships. The increasing popularity also motivates many network learning algorithms, such as community detection, clustering, classification, and embedding learning, etc.. In reality, the large network volumes often hider a direct use of learning algorithms to the graphs. As a result, it is desirable to have the flexibility to condense a network to an arbitrary size, with well-preserved network topology and node content information. In this paper, we propose a graph compression network (GEN) to achieve network compression and embedding at the same time. Our theme is to leverage the network topology to find node mappings, such that densely connected nodes, including their node content, are compressed as a new node, with a latent vector (i.e. embedding) being learned to represent the compressed node. In addition to compression learning, we also develop a novel encoding-decoding framework, using feature diffusion process, to "decompress" the condensed network. Different from traditional graph convolution which uses direct-neighbor message passing, our decompression advocates high-order message passing within compressed nodes to learning feature representation for all nodes in the network. A unique strength of GEN is that it leverages the graph neural network principle to learn mapping automatically, so one can compress a network to an arbitrary size, and also decompress it to the original node space with minimum information loss. Experiments and comparisons confirm that GEN can automatically find clusters and communities, and compress them as new nodes. Results also show that GEN achieves improved performance for numerous tasks, including graph classification and node clustering. 
    more » « less
  4. Many network/graph structures are continuously monitored by various sensors that are placed at a subset of nodes and edges. The multidimensional data collected from these sensors over time create large-scale graph data in which the data points are highly dependent. Monitoring large-scale attributed networks with thousands of nodes and heterogeneous sensor data to detect anomalies and unusual events is a complex and computationally expensive process. This paper introduces a new generic approach inspired by state-space models for network anomaly detection that can utilize the information from the network topology, the node attributes (sensor data), and the anomaly propagation sets in an integrated manner to analyze the entire network all at once. This article presents how heterogeneous network sensor data can be analyzed to locate the sources of anomalies as well as the anomalous regions in a network, which can be impacted by one or multiple anomalies at any time instance. Experimental results demonstrate the superior performance of our proposed framework in detecting anomalies in attributed graphs. Summary of Contribution: With the increasing availability of large-scale network sensors and rapid advances in artificial intelligence methods, fundamentally new analytical tools are needed that can integrate data collected from sensors across the networks for decision making while taking into account the stochastic and topological dependencies between nodes, sensors, and anomalies. This paper develops a framework to intelligently and efficiently analyze complex and highly dependent data collected from disparate sensors across large-scale network/graph structures to detect anomalies and abnormal behavior in real time. Unlike general purpose (often black-box) machine learning models, this paper proposes a unique framework for network/graph structures that incorporates the complexities of networks and interdependencies between network entities and sensors. Because of the multidisciplinary nature of the paper that involves optimization, machine learning, and system monitoring and control, it can help researchers in both operations research and computer science domains to develop new network-specific computing tools and machine learning frameworks to efficiently manage large-scale network data. 
    more » « less
  5. Graphs are powerful representations for relations among objects, which have attracted plenty of attention in both academia and industry. A fundamental challenge for graph learning is how to train an effective Graph Neural Network (GNN) encoder without labels, which are expensive and time consuming to obtain. Contrastive Learning (CL) is one of the most popular paradigms to address this challenge, which trains GNNs by discriminating positive and negative node pairs. Despite the success of recent CL methods, there are still two under-explored problems. Firstly, how to reduce the semantic error introduced by random topology based data augmentations. Traditional CL defines positive and negative node pairs via the node-level topological proximity, which is solely based on the graph topology regardless of the semantic information of node attributes, and thus some semantically similar nodes could be wrongly treated as negative pairs. Secondly, how to effectively model the multiplexity of the real-world graphs, where nodes are connected by various relations and each relation could form a homogeneous graph layer. To solve these problems, we propose a novel multiplex heterogeneous graph prototypical contrastive leaning (X-GOAL) framework to extract node embeddings. X-GOAL is comprised of two components: the GOAL framework, which learns node embeddings for each homogeneous graph layer, and an alignment regularization, which jointly models different layers by aligning layer-specific node embeddings. Specifically, the GOAL framework captures the node-level information by a succinct graph transformation technique, and captures the cluster-level information by pulling nodes within the same semantic cluster closer in the embedding space. The alignment regularization aligns embeddings across layers at both node level and cluster level. We evaluate the proposed X-GOAL on a variety of real-world datasets and downstream tasks to demonstrate the effectiveness of the X-GOAL framework. 
    more » « less