skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Using text to teach image retrieval
Image retrieval relies heavily on the quality of the data modeling and the distance measurement in the feature space. Building on the concept of image manifold, we first propose to represent the feature space of images, learned via neural networks, as a graph. Neighborhoods in the feature space are now defined by the geodesic distance between images, represented as graph vertices or manifold samples. When limited images are available, this manifold is sparsely sampled, making the geodesic computation and the corresponding retrieval harder. To address this, we augment the manifold samples with geometrically aligned text, thereby using a plethora of sentences to teach us about images. In addition to extensive results on standard datasets illustrating the power of text to help in image retrieval, a new public dataset based on CLEVR is introduced to quantify the semantic similarity between visual data and text data. The experimental results show that the joint embedding manifold is a robust representation, allowing it to be a better basis to perform image retrieval given only an image and a textual instruction on the desired modifications over the image.  more » « less
Award ID(s):
1712867 2031849
PAR ID:
10347297
Author(s) / Creator(s):
Date Published:
Journal Name:
CVPR 2021 Workshop
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The classic Generative Adversarial Net (GAN) and its variants can be roughly categorized into two large families: the unregularized versus regularized GANs. By relaxing the non-parametric assumption on the discriminator in the classic GAN, the regularized GANs have better generalization ability to produce new samples drawn from the real distribution. Although the regularized GANs have shown compelling performances, there still exist some unaddressed problems. It is well known that the real data like natural images are not uniformly distributed over the whole data space. Instead, they are often restricted to a low-dimensional manifold of the ambient space. Such a manifold assumption suggests the distance over the manifold should be a better measure to characterize the distinct between real and fake samples. Thus, we define a pullback operator to map samples back to their data manifold, and a manifold margin is defined as the distance between the pullback representations to distinguish between real and fake samples and learn the optimal generators. We justify the proposed model from both theoretical and empirical perspectives, demonstrating it can produce high quality images as compared with the other state-of-the-art GAN models. 
    more » « less
  2. The classic Generative Adversarial Net and its variants can be roughly categorized into two large families: the unregularized versus regularized GANs. By relaxing the non-parametric assumption on the discriminator in the classic GAN, the regularized GANs have better generalization ability to produce new samples drawn from the real distribution. It is well known that the real data like natural images are not uniformly distributed over the whole data space. Instead, they are often restricted to a low-dimensional manifold of the ambient space. Such a manifold assumption suggests the distance over the manifold should be a better measure to characterize the distinct between real and fake samples. Thus, we define a pullback operator to map samples back to their data manifold, and a manifold margin is defined as the distance between the pullback representations to distinguish between real and fake samples and learn the optimal generators. We justify the effectiveness of the proposed model both theoretically and empirically. 
    more » « less
  3. Generative models have recently gained increasing attention in image generation and editing tasks. However, they often lack a direct connection to object geometry, which is crucial in sensitive domains such as computational anatomy, biology, and robotics. This paper presents a novel framework for Image Generation informed by Geodesic dynamics (IGG) in deformation spaces. Our IGG model comprises two key components: (i) an efficient autoencoder that explicitly learns the geodesic path of image transformations in the latent space; and (ii) a latent geodesic diffusion model that captures the distribution of latent representations of geodesic deformations conditioned on text instructions. By leveraging geodesic paths, our method ensures smooth, topology-preserving, and interpretable deformations, capturing complex variations in image structures while maintaining geometric consistency. We validate the proposed IGG on plant growth data and brain magnetic resonance imaging (MRI). Experimental results show that IGG outperforms the state-of-the-art image generation/editing models with superior performance in generating realistic, high-quality images with preserved object topology and reduced artifacts. Our code is publicly available at https://github.com/nellie689/IGG. 
    more » « less
  4. null (Ed.)
    Representational Learning in the form of high dimensional embeddings have been used for multiple pattern recognition applications. There has been a significant interest in building embedding based systems for learning representations in the mathematical domain. At the same time, retrieval of structured information such as mathematical expressions is an important need for modern IR systems. In this work, our motivation is to introduce a robust framework for learning representations for similarity based retrieval of mathematical expressions. Given a query by example, the embedding can find the closest matching expression as a function of euclidean distance between them. We leverage recent advancements in image-based and graph-based deep learning algorithms to learn our similarity embeddings. We do this first, by using unimodal encoders in graph space and image space and then, a multi-modal combination of the same. To overcome the lack of training data, we force the networks to learn a deep metric using triplets generated with a heuristic scoring function. We also adopt a custom strategy for mining hard samples to train our neural networks. Our system produces rankings similar to those generated by the original scoring function, but using only a fraction of the time. Our results establish the viability of using such a multi-modal embedding for this task. 
    more » « less
  5. We consider the topological and geometric reconstruction of a geodesic subspace of [Formula: see text] both from the Čech and Vietoris-Rips filtrations on a finite, Hausdorff-close, Euclidean sample. Our reconstruction technique leverages the intrinsic length metric induced by the geodesics on the subspace. We consider the distortion and convexity radius as our sampling parameters for the reconstruction problem. For a geodesic subspace with finite distortion and positive convexity radius, we guarantee a correct computation of its homotopy and homology groups from the sample. This technique provides alternative sampling conditions to the existing and commonly used conditions based on weak feature size and [Formula: see text]–reach, and performs better under certain types of perturbations of the geodesic subspace. For geodesic subspaces of [Formula: see text], we also devise an algorithm to output a homotopy equivalent geometric complex that has a very small Hausdorff distance to the unknown underlying space. 
    more » « less