skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Generalized Loss-Sensitive Adversarial Learning with Manifold Margins
The classic Generative Adversarial Net (GAN) and its variants can be roughly categorized into two large families: the unregularized versus regularized GANs. By relaxing the non-parametric assumption on the discriminator in the classic GAN, the regularized GANs have better generalization ability to produce new samples drawn from the real distribution. Although the regularized GANs have shown compelling performances, there still exist some unaddressed problems. It is well known that the real data like natural images are not uniformly distributed over the whole data space. Instead, they are often restricted to a low-dimensional manifold of the ambient space. Such a manifold assumption suggests the distance over the manifold should be a better measure to characterize the distinct between real and fake samples. Thus, we define a pullback operator to map samples back to their data manifold, and a manifold margin is defined as the distance between the pullback representations to distinguish between real and fake samples and learn the optimal generators. We justify the proposed model from both theoretical and empirical perspectives, demonstrating it can produce high quality images as compared with the other state-of-the-art GAN models.  more » « less
Award ID(s):
1704309
PAR ID:
10063198
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Proceedings of European Conference on Computer Vision (ECCV 2018)
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The classic Generative Adversarial Net and its variants can be roughly categorized into two large families: the unregularized versus regularized GANs. By relaxing the non-parametric assumption on the discriminator in the classic GAN, the regularized GANs have better generalization ability to produce new samples drawn from the real distribution. It is well known that the real data like natural images are not uniformly distributed over the whole data space. Instead, they are often restricted to a low-dimensional manifold of the ambient space. Such a manifold assumption suggests the distance over the manifold should be a better measure to characterize the distinct between real and fake samples. Thus, we define a pullback operator to map samples back to their data manifold, and a manifold margin is defined as the distance between the pullback representations to distinguish between real and fake samples and learn the optimal generators. We justify the effectiveness of the proposed model both theoretically and empirically. 
    more » « less
  2. This paper addresses the mode collapse for generative adversarial networks (GANs). We view modes as a geometric structure of data distribution in a metric space. Under this geometric lens, we embed subsamples of the dataset from an arbitrary metric space into the L2 space, while preserving their pairwise distance distribution. Not only does this metric embedding determine the dimensionality of the latent space automatically, it also enables us to construct a mixture of Gaussians to draw latent space random vectors. We use the Gaussian mixture model in tandem with a simple augmentation of the objective function to train GANs. Every major step of our method is supported by theoretical analysis, and our experiments on real and synthetic data confirm that the generator is able to produce samples spreading over most of the modes while avoiding unwanted samples, outperforming several recent GAN variants on a number of metrics and offering new features. 
    more » « less
  3. This paper addresses the mode collapse for generative adversarial networks (GANs). We view modes as a geometric structure of data distribution in a metric space. Under this geometric lens, we embed subsamples of the dataset from an arbitrary metric space into the L2 space, while preserving their pairwise distance distribution. Not only does this metric embedding determine the dimensionality of the latent space automatically, it also enables us to construct a mixture of Gaussians to draw latent space random vectors. We use the Gaussian mixture model in tandem with a simple augmentation of the objective function to train GANs. Every major step of our method is supported by theoretical analysis, and our experiments on real and synthetic data confirm that the generator is able to produce samples spreading over most of the modes while avoiding unwanted samples, outperforming several recent GAN variants on a number of metrics and offering new features. 
    more » « less
  4. Image retrieval relies heavily on the quality of the data modeling and the distance measurement in the feature space. Building on the concept of image manifold, we first propose to represent the feature space of images, learned via neural networks, as a graph. Neighborhoods in the feature space are now defined by the geodesic distance between images, represented as graph vertices or manifold samples. When limited images are available, this manifold is sparsely sampled, making the geodesic computation and the corresponding retrieval harder. To address this, we augment the manifold samples with geometrically aligned text, thereby using a plethora of sentences to teach us about images. In addition to extensive results on standard datasets illustrating the power of text to help in image retrieval, a new public dataset based on CLEVR is introduced to quantify the semantic similarity between visual data and text data. The experimental results show that the joint embedding manifold is a robust representation, allowing it to be a better basis to perform image retrieval given only an image and a textual instruction on the desired modifications over the image. 
    more » « less
  5. Though generative adversarial networks (GANs) are prominent models to generate realistic and crisp images, they are unstable to train and suffer from the mode collapse problem. The problems of GANs come from approximating the intrinsic discontinuous distribution transform map with continuous DNNs. The recently proposed AE-OT model addresses the discontinuity problem by explicitly computing the discontinuous optimal transform map in the latent space of the autoencoder. Though have no mode collapse, the generated images by AE-OT are blurry. In this paper, we propose the AE-OT-GAN model to utilize the advantages of the both models: generate high quality images and at the same time overcome the mode collapse problems. Specifically, we firstly embed the low dimensional image manifold into the latent space by autoencoder (AE). Then the extended semi-discrete optimal transport (SDOT) map is used to generate new latent codes. Finally, our GAN model is trained to generate high quality images from the latent distribution induced by the extended SDOT map. The distribution transform map from this dataset related latent distribution to the data distribution will be continuous, and thus can be well approximated by the continuous DNNs. Additionally, the paired data between the latent codes and the real images gives us further restriction about the generator and stabilizes the training process. Experiments on simple MNIST dataset and complex datasets like CIFAR10 and CelebA show the advantages of the proposed method. 
    more » « less