This field trip focuses on several of the classic Cu and U(-V) ore systems of the Colorado Plateau in the context of diverse geologic environments, processes, and consequences of fluid flow of the Paradox Basin. The Paradox Basin contains a >300-m.y. history of fluid flow and resource generation. Late Paleozoic development of a K-rich evaporitic foreland basin created a setting upon which later fluid-dominated processes generated economically significant accumulations of hydrocarbons, K-rich brines, CO2, and—most notably—metals including, significant deposits of Cu and some of the largest U and V resources of the United States. The sourcing and movement of fluids of diverse types and the resulting multiplicity of metasomatic features reflect a complex history starting with salt movement beginning in the Permian, sedimentation continuing intermittently into the Paleogene, distal manifestations of Cretaceous to Paleocene orogenesis, Cenozoic magmatism and, most recently, Neogene exhumation. In light of this broader context, we will examine Cu(-Ag) systems associated with salt anticlines at Paradox Valley (Cashin mine) and Lisbon Valley (Lisbon Valley mine), superimposed modern and ancient systems at Sinbad Valley, and contrasting U-V systems in the Jurassic Morrison Formation at Monogram Mesa (Uravan district) and Triassic Chinle Formation at Lisbon Valley (Big Indian district). In these areas, we consider the types and sources of various fluids (brines, hydrocarbons, meteoric), their solutes, the sequence of events, and links to overall basin evolution. A key objective of the trip is to use these examples and current interpretations to stimulate discussion and research about fluid flow and mass transfer in basinal settings.
more »
« less
Hydrogeochemical evolution of formation waters responsible for sandstone bleaching and ore mineralization in the Paradox Basin, Colorado Plateau, USA
The Paradox Basin in the Colorado Plateau (USA) has some of the most iconic records of paleofluid flow, including sandstone bleaching and ore mineralization, and hydrocarbon, CO2, and He reservoirs, yet the sources of fluids responsible for these extensive fluid-rock reactions are highly debated. This study, for the first time, characterizes fluids within the basin to constrain the sources and emergent behavior of paleofluid flow resulting in the iconic rock records. Major ion and isotopic (δ18Owater; δDwater; δ18OSO4; δ34SSO4; δ34SH2S; 87Sr/86Sr) signatures of formation waters were used to evaluate the distribution and sources of fluids and water-rock interactions by comparison with the rock record. There are two sources of salinity in basinal fluids: (1) diagenetically altered highly evaporated paleo-seawater-derived brines associated with the Pennsylvanian Paradox Formation evaporites; and (2) dissolution of evaporites by topographically driven meteoric circulation. Fresh to brackish groundwater in the shallow Cretaceous Burro Canyon Formation contains low Cu and high SO4 concentrations and shows oxidation of sulfides by meteoric water, while U concentrations are higher than within other formation waters. Deeper brines in the Pennsylvanian Honaker Trail Formation were derived from evaporated paleo-seawater mixed with meteoric water that oxidized sulfides and dissolved gypsum and have high 87Sr/86Sr indicating interaction with radiogenic siliciclastic minerals. Upward migration of reduced (hydrocarbon- and H2S-bearing) saline fluids from the Pennsylvanian Paradox Formation along faults likely bleached sandstones in shallower sediments and provided a reduced trap for later Cu and U deposition. The distribution of existing fluids in the Paradox Basin provides important constraints to understand the rock record over geological time.
more »
« less
- Award ID(s):
- 2120733
- PAR ID:
- 10347321
- Date Published:
- Journal Name:
- GSA Bulletin
- ISSN:
- 0016-7606
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Extensive regions of yellow and white (“bleached”) sandstones within the terrestrial Jurassic red bed deposits of the Colorado Plateau reflect widespread interaction with subsurface reduced fluids which resulted in the dissolution of iron‐oxide grain coatings. Reduced fluids such as hydrocarbons, CO2, and organic acids have been proposed as bleaching agents. In this study, we characterize an altered section of the Slick Rock member of the Jurassic Entrada Sandstone that exposes bleached sandstone with bitumen‐saturated pore spaces. We observe differences in texture, porosity, mineralogy, and geochemistry between red, pink, yellow, and gray facies. In the bleached yellow facies we observe quartz overgrowths, partially dissolved K‐feldspar, calcite cement, fine‐grained illite, TiO2‐minerals, and pyrite concretions. Clay mineral content is highest at the margins of the bleached section. Fe2O3concentrations are reduced up to 3× from the red to gray facies but enriched up to 50× in iron‐oxide concretions. Metals such as Zn, Pb, and rare‐earth elements are significantly enriched in the concretions. Supported by a batch geochemical model, we conclude the interaction of red sandstones with reduced hydrocarbon‐bearing fluids caused iron‐oxide and K‐feldspar dissolution, and precipitation of quartz, calcite, clay, and pyrite. Localized redistribution of iron into concretions can account for most of the iron removed during bleaching. Pyrite and carbonate stable isotopic data suggest the hydrocarbons were sourced from the Pennsylvanian Paradox Formation. Bitumen in pore spaces and pyrite precipitation formed a reductant trap required to produce Cu, U, and V enrichment in all altered facies by younger, oxidized saline brines.more » « less
-
null (Ed.)Here we report the strontium isotope ratios (87Sr/86Sr) from pore fluids collected during International Ocean Discovery Program (IODP) Expedition 355. Ratios from Sites U1456 (N = 21) and U1457 (N = 20) are reported. Pore fluid 87Sr/86Sr is a useful tool to establish fluid-rock reactions, sources of Sr, and fluid mixing. The measured 87Sr/86Sr of the pore fluid has significant variations at both sites, and three distinct zones are identified. At Site U1456, 87Sr/86Sr starts at values similar to that of modern seawater (~0.7092) from near the seafloor down to ~100 meters below seafloor (mbsf). Over this interval, Sr concentration increases, whereas Ca decreases (Zone 1). Below 100 mbsf, 87Sr/86Sr values increase to a max of ~0.7100 at ~224 mbsf, and Sr concentrations decrease (Zone 2). Isotopic values then gradually decrease to ~0.7085, with an increase in Sr concentrations (Zone 3). Site U1457 displays the same general trends in pore fluid 87Sr/86Sr composition; however, there are distinct differences. First, Zone 1 occurs over a shorter interval (~0–54 mbsf) due to a lower sedimentation rate, and it also has lower Sr concentrations compared to Site U1456. Additionally, 87Sr/86Sr reaches a higher peak value in Zone 2 than at Site U1456. Finally, in Zone 3 the maximum Sr concentration reached is significantly lower than that at Site U1456.more » « less
-
Chemical sediments from the Early Eocene Green River Formation can be used for assessing hydroclimate and basin evolution during their deposition. The Wilkins Peak Member (WPM) of the Green River Formation contains a relatively continuous record of perennial closed-basin saline lake deposition in the Bridger Basin, southwest Wyoming, from approximately 51.6 to 49.8 Ma. The volumes and paragenesis of authigenic chemical sediments in the WPM are intrinsically related to the chemical evolution of basin brines. The geographic distribution of those chemical sediments across the Bridger Basin relates to the syn- and post-depositional tectonic history of the basin. In this study, we integrated thermodynamic modeling of chemical evolution of lake brines with chemostratigraphic and lithostratigraphic interpretations of the basin-center Solvay S-34-1 core to evaluate physical and chemical changes to and within ancient Lake Gosiute during the Early Eocene. Fine-scale X-ray fluorescence (XRF) scanning along the length of the core provides a high-resolution chemical stratigraphy of the WPM. Thermodynamic modeling of the evaporation of hypothetical inflow waters and lake brines yield predicted sequences of evaporite minerals, allowing estimation of the salinities and evaporated volumes of water required to reach saturation with respect to observed mineral deposits from the basin. The spatial distributions of bedded evaporites allow us to investigate tectonic changes to the basin during and after the deposition of the WPM. Here, we integrate these data to interpret changes in lake-level, salinity, and hydroclimate of ancient Lake Gosiute during the Early Eocene.more » « less
-
Earth’s penultimate icehouse (ca. 340–285 Ma) was a time of low atmospheric pCO2 and high pO2, formation of the supercontinent Pangaea, dynamic glaciation in the Southern Hemisphere, and radiation of the oldest tropical rainforests. Although it has been long appreciated that these major tectonic, climatic, and biotic events left their signature on seawater 87Sr/86Sr through their influence on Sr fluxes to the ocean, the temporal resolution and precision of the late Paleozoic seawater 87Sr/86Sr record remain relatively low. Here we present a high-temporal-resolution and high-fidelity record of Carboniferous– early Permian seawater 87Sr/86Sr based on conodont bioapatite from an open-water carbonate slope succession in south China. The new data define a rate of long-term rise in 87Sr/86Sr (0.000035/m.y.) from ca. 334–318 Ma comparable to that of the middle to late Cenozoic. The onset of the rapid decline in 87Sr/86Sr (0.000043/m.y.), following a prolonged plateau (318–303 Ma), is constrained to ca. 303 Ma. A major decoupling of 87Sr/86Sr and pCO2 during 303–297 Ma, coincident with the Paleozoic peak in pO2, widespread low-latitude aridification, and demise of the pan-tropical wetland forests, suggests a major shift in the dominant influence on pCO2 from continental weathering and organic carbon sequestration (as coals) on land to organic carbon burial in the ocean.more » « less