skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Parity-mixed coupled-cluster formalism for computing parity-violating amplitudes
Award ID(s):
1912465
PAR ID:
10347367
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Physical Review A
Volume:
105
Issue:
2
ISSN:
2469-9926
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Making fair decisions is crucial to ethically implementing machine learning algorithms in social settings. In this work, we consider the celebrated definition of counterfactual fairness. We begin by showing that an algorithm which satisfies counterfactual fairness also satisfies demographic parity, a far simpler fairness constraint. Similarly, we show that all algorithms satisfying demographic parity can be trivially modified to satisfy counterfactual fairness. Together, our results indicate that counterfactual fairness is basically equivalent to demographic parity, which has important implications for the growing body of work on counterfactual fairness. We then validate our theoretical findings empirically, analyzing three existing algorithms for counterfactual fairness against three simple benchmarks. We find that two simple benchmark algorithms outperform all three existing algorithms---in terms of fairness, accuracy, and efficiency---on several data sets. Our analysis leads us to formalize a concrete fairness goal: to preserve the order of individuals within protected groups. We believe transparency around the ordering of individuals within protected groups makes fair algorithms more trustworthy. By design, the two simple benchmark algorithms satisfy this goal while the existing algorithms do not. 
    more » « less
  2. null (Ed.)