- Award ID(s):
- 2022977
- NSF-PAR ID:
- 10347423
- Date Published:
- Journal Name:
- Water
- Volume:
- 13
- Issue:
- 12
- ISSN:
- 2073-4441
- Page Range / eLocation ID:
- 1677
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract. River deltas are sites of sediment accumulation along thecoastline that form critical biological habitats, host megacities, andcontain significant quantities of hydrocarbons. Despite their importance, wedo not know which factors most significantly promote sediment accumulationand dominate delta formation. To investigate this issue, we present a globaldataset of 5399 coastal rivers and data on eight environmental variables.Of these rivers, 40 % (n=2174) have geomorphic deltas defined eitherby a protrusion from the regional shoreline, a distributary channel network,or both. Globally, coastlines average one delta forevery ∼300 km of shoreline, but there are hotspots of delta formation, for examplein Southeast Asia where there is one delta per 100 km of shoreline. Ouranalysis shows that the likelihood of a river to form a delta increases withincreasing water discharge, sediment discharge, and drainage basin area. Onthe other hand, delta likelihood decreases with increasing wave height andtidal range. Delta likelihood has a non-monotonic relationship withreceiving-basin slope: it decreases with steeper slopes, but for slopes >0.006 delta likelihood increases. This reflects differentcontrols on delta formation on active versus passive margins. Sedimentconcentration and recent sea level change do not affect delta likelihood. Alogistic regression shows that water discharge, sediment discharge, waveheight, and tidal range are most important for delta formation. The logisticregression correctly predicts delta formation 74 % of the time. Our globalanalysis illustrates that delta formation and morphology represent a balancebetween constructive and destructive forces, and this framework may helppredict tipping points at which deltas rapidly shift morphologies.more » « less
-
Abstract Coastal wetlands provide essential ecosystem goods and services but are extremely vulnerable to sea‐level rise, extreme climate, and human activities, especially the coastal wetlands in large river deltas, which are regarded as “natural recorders” of changes in estuarine environments. In addition to the area (loss or gain) and quality (degradation or improvement) of coastal wetlands, the information on coastal wetland structure (e.g., patch size and number) are also major metrics for coastal restoration and biodiversity protection, but remain very limited in China's four major river deltas. In this study, we quantified the spatial–temporal dynamics of total area (TA) and patch number (PN) of coastal wetlands with different sizes in the four deltas and the protected areas (PAs) and assessed the effects of major driving factors during 1984–2020. We also investigated the effectiveness of PAs through the comparison of TA and PN of coastal wetlands before and after the years in which PAs were listed as Ramsar Sites. We found both TA and PN experienced substantial losses in the Liaohe River Delta and Yellow River Delta but recent recoveries in the Yangtze River Delta. The coastal wetlands had a relatively stable and variable trend in TA but had a continually increasing trend in PN in the Pearl River Delta. Furthermore, reduced coastal reclamation, ecological restoration projects, and rapid expansion of invasive plants had great impacts on the coastal wetland structure in various ways. We also found that PAs were effective in halting the decreasing trends in coastal wetland areas and slowing the expansion of reclamation, but the success of PAs is being counteracted by soaring exotic plant invasions. Our findings provide vital information for the government and the public to address increasing challenges of coastal restoration, management, and sustainability in large river deltas.
-
The Relationship Between Delta Form and Nitrate Retention Revealed by Numerical Modeling Experiments
Abstract River deltas display a wide range of morphologic patterns that influence how nutrients interact in channels and wetlands on their way to the coast. To quantify the role of delta morphology on nitrate fate, we simulated reactive nitrate transport over steady base flow conditions for six synthetic, morphologically unique river‐dominated deltas created in Delft3D by varying incoming grain size distributions. We parameterized nitrate removal kinetics using an observed relationship with elevation from Wax Lake Delta (Louisiana, USA). Total nitrate retention across the six synthetic deltas and Wax Lake Delta ranged from 1.3%‐13%, suggesting that these river‐dominated deltas have limited ability to remove nitrate from incoming river water. Nitrate removal is constrained by limited hydrologic connectivity with the areas of greatest nitrate demand, which are found at higher elevation. In these synthetic numerical experiments, the efficiency of nitrate removal is greatest for deltas with more topologic complexity and greater proportions of the delta plain at higher elevation, which are both common characteristics of coarser‐grained deltas. The positive relationship between grain size and nitrate removal may help guide land reclamation projects if project goals include minimizing nitrate export to the sea.
-
Abstract The Colorado River Basin is a hydrologic river network that directs runoff from rain and snow falling on mountains, primarily in Colorado and Wyoming, to the Colorado River Delta in Mexico. Over the last century, in response to basin‐wide water shortages, legal agreements between stakeholders in seven U.S. states and Mexico, hydrologic flows from users on the main stem of the river have been reallocated to junior water rights holders. Municipalities, businesses, farmers, and households utilize the Colorado River water to produce and trade valuable, water‐derived goods and services, which effectively reallocates water through a continually adapting, boundary‐free economic river network providing indirect access to virtual Colorado River water. We conceptualize the Colorado River Basin as a multiplex network comprised of interdependent natural flow networks, direct (infrastructural) flow networks, and indirect (virtual) flow networks. Using this reframing, we quantify the total hydrosocial impact of the Drought Contingency Plan (DCP) on Lower Basin states. For each Mm3of water reduced through the DCP, Arizona, Nevada, and California lose an additional 0.42–0.43 Mm3, 0.33–0.51 Mm3, and 1.06–1.10 Mm3of virtual water flow, respectively. Hence, the DCP will require Arizona, Nevada, and Southern California to restructure how they use water, relying less on direct and indirect consumption of the Colorado River water and finding more indirect water sources outside that basin.
-
Intensification of anthropogenic activities and related processes have altered the morphology of modern deltaic systems. As a result, mapping of geomorphic features, such as paleochannels, using recently acquired digital elevation data has become increasingly difficult. Using the Nile River and delta as a test site, we developed and applied procedures to map the distribution of paleochannels that existed throughout the Holocene. A high-resolution digital elevation model (DEM) derived from an early, detailed topographic sheet collection was used to minimize the impact of recent man-made topographic artifacts. The DEM-inferred paleochannel distribution was verified using direct and indirect subsurface data. Using our adopted methodology, we identified 76 main and subsidiary paleochannels with a total length exceeding (by >500 km) previously mapped paleochannels. The overwhelming majority (>80%) of the reported historical and archeological sites (29 sites) in the Nile Delta were found to be proximal (<2.5 km) to the identified paleochannels, an observation that is not obvious in any of the previous paleochannel delineations. These observations suggest that the delineated paleochannel distribution of the Nile Delta can be a useful guide for locating ancient cities currently obscured by man-made structures or buried under thick Holocene deposits. Moreover, it can potentially enhance our understanding of the geological and archeological history of the Nile Delta and has societal benefits as these channels could act as preferred pathways for groundwater flow. The advocated methods can be readily applied to river deltas worldwide where high-resolution elevation datasets acquired before the onset of heavy anthropogenic activities are available.