skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: The thesan project: predictions for multitracer line intensity mapping in the epoch of reionization
ABSTRACT Line intensity mapping (LIM) is rapidly emerging as a powerful technique to study galaxy formation and cosmology in the high-redshift Universe. We present LIM estimates of select spectral lines originating from the interstellar medium (ISM) of galaxies and 21 cm emission from neutral hydrogen gas in the Universe using the large volume, high resolution thesan reionization simulations. A combination of subresolution photoionization modelling for H ii regions and Monte Carlo radiative transfer calculations is employed to estimate the dust-attenuated spectral energy distributions (SEDs) of high-redshift galaxies (z ≳ 5.5). We show that the derived photometric properties such as the ultraviolet (UV) luminosity function and the UV continuum slopes match observationally inferred values, demonstrating the accuracy of the SED modelling. We provide fits to the luminosity–star formation rate relation (L–SFR) for the brightest emission lines and find that important differences exist between the derived scaling relations and the widely used low-z ones because the ISM of reionization era galaxies is generally less metal enriched than in their low-redshift counterparts. We use these relations to construct line intensity maps of nebular emission lines and cross-correlate with the 21 cm emission. Interestingly, the wavenumber at which the correlation switches sign (ktransition) depends heavily on the reionization model and to a lesser extent on the targeted emission line, which is consistent with the picture that ktransition probes the typical sizes of ionized regions. The derived scaling relations and intensity maps represent a timely state-of-the-art framework for forecasting and interpreting results from current and upcoming LIM experiments.  more » « less
Award ID(s):
1814259 1909831 2007355
PAR ID:
10347495
Author(s) / Creator(s):
; ; ; ; ; ; ;
Date Published:
Journal Name:
Monthly Notices of the Royal Astronomical Society
Volume:
514
Issue:
3
ISSN:
0035-8711
Page Range / eLocation ID:
3857 to 3878
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Submillimeter emission lines produced by the interstellar medium (ISM) are strong tracers of star formation and are some of the main targets of line intensity mapping (LIM) surveys. In this work we present an empirical multiline emission model that simultaneously covers the mean, scatter, and correlations of [C ii ], CO J = 1–0 to J = 5–4, and [C i ] lines in the redshift range 1 ≤ z ≤ 9. We assume that the galaxy ISM line emission luminosity versus halo mass relations can be described by double power laws with redshift-dependent lognormal scatter. The model parameters are then derived by fitting to the state-of-the-art semianalytic simulation results that have successfully reproduced multiple submillimeter line observations at 0 ≤ z ≲ 6. We cross-check the line emission statistics predicted by the semianalytic simulation and our empirical model, finding that at z ≥ 1 our model reproduces the simulated line intensities with fractional error less than about 10%. The fractional difference is less than 25% for the power spectra. Grounded on physically motivated and self-consistent galaxy simulations, this computationally efficient model will be helpful in forecasting ISM emission-line statistics for upcoming LIM surveys. 
    more » « less
  2. Abstract Observations of high-redshift galaxies ( z > 5) have shown that these galaxies have extreme emission lines with equivalent widths much larger than their local star-forming counterparts. Extreme emission line galaxies (EELGs) in the nearby universe are likely analogs to galaxies during the Epoch of Reionization and provide nearby laboratories to understand the physical processes important to the early universe. We use Hubble Space Telescope/Cosmic Origins Spectrograph and Large Binocular Telescope/Multi-Object Double Spectrographs spectra to study two nearby EELGs, J104457 and J141851. The far-UV spectra indicate that these two galaxies contain stellar populations with ages ≲10 Myr and metallicities ≤0.15 Z ⊙ . We use photoionization modeling to compare emission lines from models of single-age bursts of star formation to observed emission lines and find that the single-age bursts do not reproduce high-ionization lines including [O iii ] or very-high-ionization lines like He ii or O iv ]. Photoionization modeling using the stellar populations fit from the UV continuum similarly is not capable of reproducing the very-high-energy emission lines. We add a blackbody to the stellar populations fit from the UV continuum to model the necessary high-energy photons to reproduce the very-high-ionization lines of He ii and O iv ]. We find that we need a blackbody of 80,000 K and ∼45%–55% of the luminosity from the blackbody and young stellar population to reproduce the very-high-ionization lines while simultaneously reproducing the low-, intermediate-, and high-ionization emission lines. Our self-consistent model of the ionizing spectra of two nearby EELGs indicates the presence of a previously unaccounted-for source of hard ionizing photons in reionization analogs. 
    more » « less
  3. ABSTRACT Broad-band tomography statistically extracts the redshift distribution of frequency dependent emission from the cross-correlation of intensity maps with a reference catalog of galaxy tracers. We make forecasts for the performance of future all-sky UV experiments doing broad-band tomography. We consider the Cosmological Advanced Survey Telescope for Optical-UV Research (castor) and the Spectro-Photometer for the History of the Universe, Epoch of Reionization, and Ices Explorer (SPHEREx). The dominant uncertainty is from variability in the photometric zero-point, which scales with limiting magnitude and mirror size. With this scaling and assuming a galaxy number density characteristic of future spectroscopic data sets, we find that castor measures the UV background SED 2–10 times better than existing data. The applicable redshift range will expand from the current z < 1 to z ≈ 0–3 with castor and z = 5–9 with SPHEREx. We show that castor can provide competitive constraints on the EBL monopole to those available from galaxy number counts and direct measurement techniques. At high redshift especially, these results will help understand galaxy formation and reionization. Our modelling code and chains are publicly available. 
    more » « less
  4. Abstract The epoch of reionization (EoR) offers a unique window into the dawn of galaxy formation, through which high-redshift galaxies can be studied by observations of both themselves and their impact on the intergalactic medium. Line intensity mapping (LIM) promises to explore cosmic reionization and its driving sources by measuring intensity fluctuations of emission lines tracing the cosmic gas in varying phases. Using LIMFAST, a novel seminumerical tool designed to self-consistently simulate LIM signals of multiple EoR probes, we investigate how building blocks of galaxy formation and evolution theory, such as feedback-regulated star formation and chemical enrichment, might be studied with multitracer LIM during the EoR. On galaxy scales, we show that the star formation law and the feedback associated with star formation can be indicated by both the shape and redshift evolution of LIM power spectra. For a baseline model of metal production that traces star formation, we find that lines highly sensitive to metallicity are generally better probes of galaxy formation models. On larger scales, we demonstrate that inferring ionized bubble sizes from cross-correlations between tracers of ionized and neutral gas requires a detailed understanding of the astrophysics that shape the line luminosity–halo mass relation. Despite various modeling and observational challenges, wide-area, multitracer LIM surveys will provide important high-redshift tests for the fundamentals of galaxy formation theory, especially the interplay between star formation and feedback by accessing statistically the entire low-mass population of galaxies as ideal laboratories, complementary to upcoming surveys of individual sources by new-generation telescopes. 
    more » « less
  5. ABSTRACT The elemental abundances in the broad-line regions of high-redshift quasars trace the chemical evolution in the nuclear regions of massive galaxies in the early Universe. In this work, we study metallicity-sensitive broad emission-line flux ratios in rest-frame UV spectra of 25 high-redshift (5.8 < z < 7.5) quasars observed with the VLT/X-shooter and Gemini/GNIRS instruments, ranging over $$\log \left({{M}_{\rm {BH}}/\rm {M}_{\odot }}\right) = 8.4-9.8$$ in black hole mass and $$\log \left(\rm {L}_{\rm {bol}}/\rm {erg \, s}^{-1}\right) = 46.7-47.7$$ in bolometric luminosity. We fit individual spectra and composites generated by binning across quasar properties: bolometric luminosity, black hole mass, and blueshift of the C iv line, finding no redshift evolution in the emission-line ratios by comparing our high-redshift quasars to lower redshift (2.0 < z < 5.0) results presented in the literature. Using cloudy-based locally optimally emitting cloud photoionization model relations between metallicity and emission-line flux ratios, we find the observable properties of the broad emission lines to be consistent with emission from gas clouds with metallicity that are at least 2–4 times solar. Our high-redshift measurements also confirm that the blueshift of the C iv emission line is correlated with its equivalent width, which influences line ratios normalized against C iv. When accounting for the C iv blueshift, we find that the rest-frame UV emission-line flux ratios do not correlate appreciably with the black hole mass or bolometric luminosity. 
    more » « less