skip to main content


Search for: All records

Award ID contains: 1909831

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. ABSTRACT

    We present a new set of cosmological zoom-in simulations of a Milky Way (MW)-like galaxy that for the first time include elastic velocity-dependent self-interacting dark matter (SIDM) and IllustrisTNG physics. With these simulations, we investigate the interaction between SIDM and baryons and its effects on the galaxy evolution process. We also introduce a novel set of modified dark matter-only simulations that can reasonably replicate the effects of fully realized hydrodynamics on the DM halo while simplifying the analysis and lowering the computational cost. We find that baryons change the thermal structure of the central region of the halo to a greater extent than the SIDM scatterings for MW-like galaxies. Additionally, we find that the new thermal structure of the MW-like halo causes SIDM to create cuspier central densities rather than cores because the SIDM scatterings remove the thermal support by transferring heat away from the centre of the galaxy. We find that this effect, caused by baryon contraction, begins to affect galaxies with a stellar mass of 108 M⊙ and increases in strength to the MW-mass scale.

     
    more » « less
  2. ABSTRACT

    We quantify the impact of galaxy formation on dark matter halo shapes using cosmological simulations at redshift z = 0. Using magnetohydrodynamic simulations from the IllustrisTNG project, we focus on haloes of mass $10^{10\!-\!14} \, \rm M_{\odot }$ from the 50 Mpc (TNG50) and 100 Mpc (TNG100) boxes and compare them to dark matter-only (DMO) analogues and other simulations, e.g. Numerical Investigation of a Hundred Astrophysical Objects (NIHAO) and Evolution and Assembly of GaLaxies and their Environments (EAGLE). We further quantify the prediction uncertainty by varying the feedback models using smaller 25 ${\rm Mpc}\, h^{-1}$ boxes. We find that (i) galaxy formation results in rounder haloes compared to DMO simulations, in qualitative agreement with past results. Haloes of mass ${\approx }2\times 10^{12} \, \rm M_{\odot }$ are most spherical, with an average minor-to-major axial ratio of $\langle s \rangle$ ≈ 0.75 in the inner halo, an increase of 40 per cent compared to their DMO counterparts. No significant difference is present for low-mass $10^{10} \, \rm M_{\odot }$ haloes; (ii) stronger feedback, e.g. increasing galactic wind speed, reduces the impact of baryons; (iii) the inner halo shape correlates with the stellar mass fraction, explaining the dependence of halo shapes on feedback models; and (iv) the fiducial and weaker feedback models are most consistent with observational estimates of the Milky Way halo shape. At fixed halo mass, very diverse and possibly unrealistic feedback models all predict inner shapes closer to one another than to the DMO results. Because of the large halo-to-halo variation in halo shape, a larger observational sample is required to statistically distinguish different baryonic prescriptions.

     
    more » « less
  3. ABSTRACT

    Galaxy mergers are known to host abundant young massive cluster (YMC) populations, whose formation mechanism is still not well-understood. Here, we present a high-resolution galaxy merger simulation with explicit star formation and stellar feedback prescriptions to investigate how mergers affect the properties of the interstellar medium and YMCs. Compared with a controlled simulation of an isolated galaxy, the mass fraction of dense and high-pressure gas is much higher in mergers. Consequently, the mass function of both molecular clouds and YMCs becomes shallower and extends to higher masses. Moreover, cluster formation efficiency is significantly enhanced and correlates positively with the star formation rate surface density and gas pressure. We track the orbits of YMCs and investigate the time evolution of tidal fields during the course of the merger. At an early stage of the merger, the tidal field strength correlates positively with YMC mass, λtid ∝ M0.71, which systematically affects the shape of the mass function and age distribution of the YMCs. At later times, most YMCs closely follow the orbits of their host galaxies, gradually sinking into the centre of the merger remnant due to dynamical friction, and are quickly dissolved via efficient tidal disruption. Interestingly, YMCs formed during the first passage, mostly in tidal tails and bridges, are distributed over a wide range of galactocentric radii, greatly increasing their survivability because of the much weaker tidal field in the outskirts of the merger system. These YMCs are promising candidates for globular clusters that survive to the present day.

     
    more » « less
  4. ABSTRACT Line intensity mapping (LIM) is rapidly emerging as a powerful technique to study galaxy formation and cosmology in the high-redshift Universe. We present LIM estimates of select spectral lines originating from the interstellar medium (ISM) of galaxies and 21 cm emission from neutral hydrogen gas in the Universe using the large volume, high resolution thesan reionization simulations. A combination of subresolution photoionization modelling for H ii regions and Monte Carlo radiative transfer calculations is employed to estimate the dust-attenuated spectral energy distributions (SEDs) of high-redshift galaxies (z ≳ 5.5). We show that the derived photometric properties such as the ultraviolet (UV) luminosity function and the UV continuum slopes match observationally inferred values, demonstrating the accuracy of the SED modelling. We provide fits to the luminosity–star formation rate relation (L–SFR) for the brightest emission lines and find that important differences exist between the derived scaling relations and the widely used low-z ones because the ISM of reionization era galaxies is generally less metal enriched than in their low-redshift counterparts. We use these relations to construct line intensity maps of nebular emission lines and cross-correlate with the 21 cm emission. Interestingly, the wavenumber at which the correlation switches sign (ktransition) depends heavily on the reionization model and to a lesser extent on the targeted emission line, which is consistent with the picture that ktransition probes the typical sizes of ionized regions. The derived scaling relations and intensity maps represent a timely state-of-the-art framework for forecasting and interpreting results from current and upcoming LIM experiments. 
    more » « less
  5. ABSTRACT Self-interacting dark matter (SIDM) cosmologies admit an enormous diversity of dark matter (DM) halo density profiles, from low-density cores to high-density core-collapsed cusps. The possibility of the growth of high central density in low-mass haloes, accelerated if haloes are subhaloes of larger systems, has intriguing consequences for small-halo searches with substructure lensing. However, following the evolution of ${\lesssim}10^8 \, \mathrm{M}_\odot$ subhaloes in lens-mass systems (${\sim}10^{13}\, \mathrm{M}_\odot$) is computationally expensive with traditional N-body simulations. In this work, we develop a new hybrid semi-analytical + N-body method to study the evolution of SIDM subhaloes with high fidelity, from core formation to core-collapse, in staged simulations. Our method works best for small subhaloes (≲1/1000 host mass), for which the error caused by dynamical friction is minimal. We are able to capture the evaporation of subhalo particles by interactions with host halo particles, an effect that has not yet been fully explored in the context of subhalo core-collapse. We find three main processes drive subhalo evolution: subhalo internal heat outflow, host-subhalo evaporation, and tidal effects. The subhalo central density grows only when the heat outflow outweighs the energy gain from evaporation and tidal heating. Thus, evaporation delays or even disrupts subhalo core-collapse. We map out the parameter space for subhaloes to core-collapse, finding that it is nearly impossible to drive core-collapse in subhaloes in SIDM models with constant cross-sections. Any discovery of ultracompact dark substructures with future substructure lensing observations favours additional degrees of freedom, such as velocity-dependence, in the cross-section. 
    more » « less
  6. null (Ed.)
    Abstract Deciphering the formation of supermassive black holes (SMBHs) is a key science goal for upcoming observational facilities. In many theoretical channels proposed so far, the seed formation depends crucially on local gas conditions. We systematically characterize the impact of a range of gas-based black hole seeding prescriptions on SMBH populations using cosmological simulations. Seeds of mass Mseed ∼ 103–106 M⊙ h−1 are placed in haloes that exceed critical thresholds for star-forming, metal-poor gas mass and halo mass (defined as $\tilde{M}_{\mathrm{sf,mp}}$ and $\tilde{M}_{\mathrm{h}}$, respectively, in units of Mseed). We quantify the impact of these parameters on the properties of z ≥ 7 SMBHs. Lower seed masses produce higher black hole merger rates (by factors of ∼10 and ∼1000 at z ∼ 7 and z ∼ 15, respectively). For fixed seed mass, we find that $\tilde{M}_{\mathrm{h}}$ has the strongest impact on the black hole population at high redshift (z ≳ 15, where a factor of 10 increase in $\tilde{M}_{\mathrm{h}}$ suppresses merger rates by ≳ 100). At lower redshift (z ≲ 15), we find that $\tilde{M}_{\mathrm{sf,mp}}$ has a larger impact on the black hole population. Increasing $\tilde{M}_{\mathrm{sf,mp}}$ from 5–150 suppresses the merger rates by factors of ∼8 at z ∼ 7–15. This suggests that the seeding criteria explored here could leave distinct imprints on LISA merger rates. In contrast, AGN luminosity functions are much less sensitive to seeding criteria, varying by factors ≲ 2 − 3 within our models. Such variations will be challenging to probe even with future sensitive instruments such as Lynx or JWST. Our study provides a useful benchmark for development of seed models for large-volume cosmological simulations. 
    more » « less
  7. null (Ed.)
    ABSTRACT We present a spectroscopic and imaging study of an abnormal active galactic nucleus (AGN), 2MASX J00423991 + 3017515. This AGN is newly identified in the hard X-rays by the Swift BAT All-Sky survey and found in an edge-on disc galaxy interacting with a nearby companion. Here, we analyse the first optical spectra obtained for this system (taken in 2011 and 2016), high-resolution imaging taken with the Hubble Space Telescope and Chandra X-ray Observatory, and 1 imaging with the Very Large Array. Two unique properties are revealed: the peaks of the broad Balmer emission lines (associated with gas orbiting very near the supermassive black hole) are blueshifted from the corresponding narrow line emission and host galaxy absorption by 1540 km s−1, and the AGN is spatially displaced from the apparent centre of its host galaxy by 3.8 kpc. We explore several scenarios to explain these features, along with other anomalies, and propose that 2MASX J00423991 + 3017515 may be an AGN with an unusually strong wind residing in a uniquely configured major merger, or that it is an AGN recoiling from either a gravitational ‘slingshot’ in a three-body interaction or from a kick due to the asymmetric emission of gravitational waves following the coalescence of two progenitor supermassive black holes. 
    more » « less
  8. null (Ed.)
  9. null (Ed.)
    ABSTRACT We present a model for the interaction between dust and radiation fields in the radiation hydrodynamic code arepo-rt, which solves the moment-based radiative transfer equations on an unstructured moving mesh. Dust is directly treated using live simulation particles, each of which represent a population of grains that are coupled to hydrodynamic motion through a drag force. We introduce methods to calculate radiation pressure on and photon absorption by dust grains. By including a direct treatment of dust, we are able to calculate dust opacities and update radiation fields self-consistently based on the local dust distribution. This hybrid scheme coupling dust particles to an unstructured mesh for radiation is validated using several test problems with known analytic solutions, including dust driven via spherically symmetric flux from a constant luminosity source and photon absorption from radiation incident on a thin layer of dust. Our methods are compatible with the multifrequency scheme in arepo-rt, which treats UV, optical photons as single scattered and IR photons as multi scattered. At IR wavelengths, we model heating of and thermal emission from dust. Dust and gas are not assumed to be in local thermodynamic equilibrium but transfer energy through collisional exchange. We estimate dust temperatures by balancing these dust-radiation and dust-gas energy exchange rates. This framework for coupling dust and radiation can be applied in future radiation hydrodynamic simulations of galaxy formation. 
    more » « less
  10. null (Ed.)
    ABSTRACT Massive black hole (MBH) binary inspiral time-scales are uncertain, and their spins are even more poorly constrained. Spin misalignment introduces asymmetry in the gravitational radiation, which imparts a recoil kick to the merged MBH. Understanding how MBH binary spins evolve is crucial for determining their recoil velocities, their gravitational wave (GW) waveforms detectable with Laser Interferometer Space Antenna, and their retention rate in galaxies. Here, we introduce a sub-resolution model for gas- and gravitational wave (GW)-driven MBH binary spin evolution using accreting MBHs from the Illustris cosmological hydrodynamic simulations. We also model binary inspiral via dynamical friction, stellar scattering, viscous gas drag, and GW emission. Our model assumes that the circumbinary disc always removes angular momentum from the binary. It also assumes differential accretion, which causes greater alignment of the secondary MBH spin in unequal-mass mergers. We find that 47 per cent of the MBHs in our population merge by z = 0. Of these, 19 per cent have misaligned primaries and 10 per cent have misaligned secondaries at the time of merger in our fiducial model with initial eccentricity of 0.6 and accretion rates from Illustris. The MBH misalignment fraction depends strongly on the accretion disc parameters, however. Reducing accretion rates by a factor of 100, in a thicker disc, yields 79 and 42 per cent misalignment for primaries and secondaries, respectively. Even in the more conservative fiducial model, more than 12 per cent of binaries experience recoils of >500 km s−1, which could displace them at least temporarily from galactic nuclei. We additionally find that a significant number of systems experience strong precession. 
    more » « less