skip to main content


Title: Nonlocal topological insulators: Deterministic aperiodic arrays supporting localized topological states protected by nonlocal symmetries
The properties of topological systems are inherently tied to their dimensionality. Indeed, higher-dimensional periodic systems exhibit topological phases not shared by their lower-dimensional counterparts. On the other hand, aperiodic arrays in lower-dimensional systems (e.g., the Harper model) have been successfully employed to emulate higher-dimensional physics. This raises a general question on the possibility of extended topological classification in lower dimensions, and whether the topological invariants of higher-dimensional periodic systems may assume a different meaning in their lower-dimensional aperiodic counterparts. Here, we demonstrate that, indeed, for a topological system in higher dimensions one can construct a one-dimensional (1D) deterministic aperiodic counterpart which retains its spectrum and topological characteristics. We consider a four-dimensional (4D) quantized hexadecapole higher-order topological insulator (HOTI) which supports topological corner modes. We apply the Lanczos transformation and map it onto an equivalent deterministic aperiodic 1D array (DAA) emulating 4D HOTI in 1D. We observe topological zero-energy zero-dimensional (0D) states of the DAA—the direct counterparts of corner states in 4D HOTI and the hallmark of the multipole topological phase, which is meaningless in lower dimensions. To explain this paradox, we show that higher-dimension invariant, the multipole polarization, retains its quantization in the DAA, yet changes its meaning by becoming a nonlocal correlator in the 1D system. By introducing nonlocal topological phases of DAAs, our discovery opens a direction in topological physics. It also unveils opportunities to engineer topological states in aperiodic systems and paves the path to application of resonances associates with such states protected by nonlocal symmetries.  more » « less
Award ID(s):
1809915
NSF-PAR ID:
10347557
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
Proceedings of the National Academy of Sciences
Volume:
118
Issue:
34
ISSN:
0027-8424
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Modern technological advances allow for the study of systems with additional synthetic dimensions. Higher-order topological insulators in topological states of matters have been pursued in lower physical dimensions by exploiting synthetic dimensions with phase transitions. While synthetic dimensions can be rendered in the photonics and cold atomic gases, little to no work has been succeeded in acoustics because acoustic wave-guides cannot be weakly coupled in a continuous fashion. Here, we formulate the theoretical principles and manufacture acoustic crystals composed of arrays of acoustic cavities strongly coupled through modulated channels to evidence one-dimensional (1D) and two-dimensional (2D) dynamic topological pumpings. In particular, the higher-order topological edge-bulk-edge and corner-bulk-corner transport are physically illustrated in finite-sized acoustic structures. We delineate the generated 2D and four-dimensional (4D) quantum Hall effects by calculating first and second Chern numbers and physically demonstrate robustness against the geometrical imperfections. Synthetic dimensions could provide a powerful way for acoustic topological wave steering and open up a platform to explore any continuous orbit in higher-order topological matter in dimensions four and higher. 
    more » « less
  2. Abstract

    The bulk-boundary correspondence (b-bc) principle states that the presence and number ofevanescentbandgap modes at an interface between two periodic media depend on the topological invariants (Chern numbers in 2D or Zak phases in 1D) ofpropagatingmodesat completely different frequenciesin all Bloch bands below that bandgap. The objective of this letter is to explain, on physical grounds, this connection between modes with completely different characteristics. We assume periodic lossless 1D structures and lattice cells with mirror symmetry; in this case the Zak phase is unambiguously defined. The letter presents a systematic study of the behavior of electromagnetic Bloch impedance, defined as the ratio of electrical and magnetic fields in a Bloch wave at the boundary of a lattice cell. The impedance-centric view confers transparent physical meaning on the bulk-boundary correspondence principle. Borrowing from the semiconductor terminology, we classify the bandgaps asp- andn-type at the Γ andXpoints, depending on whether the Bloch impedance has a pole (p) or a null (n) at the bottom of that gap. An interface mode exists only forpn-junctions per our definition. We expect these ideas to be extendable to problems in higher dimensions, with a variety of emerging applications.

     
    more » « less
  3. Classical wave systems have constituted an excellent platform for emulating complex quantum phenomena, such as demonstrating topological phenomena in photonics and acoustics. Recently, a new class of topological states localized in more than one dimension of a D -dimensional system, referred to as higher-order topological (HOT) states, has been reported, offering an even more versatile platform to confine and control classical radiation and mechanical motion. Here, we design and experimentally study a 3D topological acoustic metamaterial supporting third-order (0D) topological corner states along with second-order (1D) edge states and first-order (2D) surface states within the same topological bandgap, thus establishing a full hierarchy of nontrivial bulk polarization–induced states in three dimensions. The assembled 3D topological metamaterial represents the acoustic analog of a pyrochlore lattice made of interconnected molecules, and is shown to exhibit topological bulk polarization, leading to the emergence of boundary states. 
    more » « less
  4. BACKGROUND The past decade has witnessed considerable progress toward the creation of new quantum technologies. Substantial advances in present leading qubit technologies, which are based on superconductors, semiconductors, trapped ions, or neutral atoms, will undoubtedly be made in the years ahead. Beyond these present technologies, there exist blueprints for topological qubits, which leverage fundamentally different physics for improved qubit performance. These qubits exploit the fact that quasiparticles of topological quantum states allow quantum information to be encoded and processed in a nonlocal manner, providing inherent protection against decoherence and potentially overcoming a major challenge of the present generation of qubits. Although still far from being experimentally realized, the potential benefits of this approach are evident. The inherent protection against decoherence implies better scalability, promising a considerable reduction in the number of qubits needed for error correction. Transcending possible technological applications, the underlying physics is rife with exciting concepts and challenges, including topological superconductors, non-abelian anyons such as Majorana zero modes (MZMs), and non-abelian quantum statistics.­­ ADVANCES In a wide-ranging and ongoing effort, numerous potential material platforms are being explored that may realize the required topological quantum states. Non-abelian anyons were first predicted as quasiparticles of topological states known as fractional quantum Hall states, which are formed when electrons move in a plane subject to a strong perpendicular magnetic field. The prediction that hybrid materials that combine topological insulators and conventional superconductors can support localized MZMs, the simplest type of non-abelian anyon, brought entirely new material platforms into view. These include, among others, semiconductor-superconductor hybrids, magnetic adatoms on superconducting substrates, and Fe-based superconductors. One-dimensional systems are playing a particularly prominent role, with blueprints for quantum information applications being most developed for hybrid semiconductor-superconductor systems. There have been numerous attempts to observe non-abelian anyons in the laboratory. Several experimental efforts observed signatures that are consistent with some of the theoretical predictions for MZMs. A few extensively studied platforms were subjected to intense scrutiny and in-depth analyses of alternative interpretations, revealing a more complex reality than anticipated, with multiple possible interpretations of the data. Because advances in our understanding of a physical system often rely on discrepancies between experiment and theory, this has already led to an improved understanding of Majorana signatures; however, our ability to detect and manipulate non-abelian anyons such as MZMs remains in its infancy. Future work can build on improved materials in some of the existing platforms but may also exploit new materials such as van der Waals heterostructures, including twisted layers, which promise many new options for engineering topological phases of matter. OUTLOOK Experimentally establishing the existence of non-abelian anyons constitutes an outstandingly worthwhile goal, not only from the point of view of fundamental physics but also because of their potential applications. Future progress will be accelerated if claims of Majorana discoveries are based on experimental tests that go substantially beyond indicators such as zero-bias peaks that, at best, suggest consistency with a Majorana interpretation. It will be equally important that these discoveries build on an excellent understanding of the underlying material systems. Most likely, further material improvements of existing platforms and the exploration of new material platforms will both be important avenues for progress toward obtaining solid evidence for MZMs. Once that has been achieved, we can hope to explore—and harness—the fascinating physics of non-abelian anyons such as the topologically protected ground state manifold and non-abelian statistics. Proposed topological platforms. (Left) Proposed state of electrons in a high magnetic field (even-denominator fractional quantum Hall states) are predicted to host Majorana quasiparticles. (Right) Hybrid structures of superconductors and other materials have also been proposed to host such quasiparticles and can be tailored to create topological quantum bits based on Majoranas. 
    more » « less
  5. Abstract

    The emergence of a fractal energy spectrum is the quintessence of the interplay between two periodic parameters with incommensurate length scales. crystals can emulate such interplay and also exhibit a topological bulk-boundary correspondence, enabled by their nontrivial topology in virtual dimensions. Here we propose, fabricate and experimentally test a reconfigurable one-dimensional (1D) acoustic array, in which the resonant frequencies of each element can be independently fine-tuned by a piston. We map experimentally the full Hofstadter butterfly spectrum by measuring the acoustic density of states distributed over frequency while varying the long-range order of the array. Furthermore, by adiabatically changing the phason of the array, we map topologically protected fractal boundary states, which are shown to be pumped from one edge to the other. This reconfigurable crystal serves as a model for future extensions to electronics, photonics and mechanics, as well as to quasi-crystalline systems in higher dimensions.

     
    more » « less