Abstract We present the results of an Atacama Large Millimeter/submillimeter Array survey to identify 183 GHz H2O maser emission from active galactic nuclei (AGNs) already known to host 22 GHz megamaser systems. Out of 20 sources observed, we detect significant 183 GHz maser emission from 13; this survey thus increases the number of AGN known to host (sub)millimeter megamasers by a factor of 5. We find that the 183 GHz emission is systematically fainter than the 22 GHz emission from the same targets, with typical flux densities being roughly an order of magnitude lower at 183 GHz than at 22 GHz. However, the isotropic luminosities of the detected 183 GHz sources are comparable to their 22 GHz values. For two of our sources—ESO 269-G012 and the Circinus galaxy—we detect rich 183 GHz spectral structure containing multiple line complexes. The 183 GHz spectrum of ESO 269-G012 exhibits the triple-peaked structure characteristic of an edge-on AGN disk system. The Circinus galaxy contains the strongest 183 GHz emission detected in our sample, peaking at a flux density of nearly 5 Jy. The high signal-to-noise ratios achieved by these strong lines enable a coarse mapping of the 183 GHz maser system, in which the masers appear to be distributed similarly to those seen in VLBI maps of the 22 GHz system in the same galaxy and may be tracing the circumnuclear accretion disk at larger orbital radii than the 22 GHz masers. This newly identified population of AGN disk megamasers presents a motivation for developing VLBI capabilities at 183 GHz.
more »
« less
Architecture for Compact Photonic Downconversion of Broadband RF Signals
We demonstrate the use of a dual comb photonic system for downconversion and disambiguation of RF signals ranging from 4.3 GHz to 17.3 GHz. Our system has future potential for miniaturization, a key for deployment in real-world applications.
more »
« less
- Award ID(s):
- 1809784
- PAR ID:
- 10347599
- Date Published:
- Journal Name:
- CLEO: Science and Innovations
- Page Range / eLocation ID:
- STh5M.7
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract The characterization of antenna radiation patterns in millimeter‐wave (mmW) bands can be particularly challenging. Due to a small wavelength, minute misplacement of the probe antenna in the order of few millimeters can generate substantial errors in the measured pattern. A highly precise measurement system that incorporates a 6‐axis compact robotic arm is implemented to overcome this challenge. System testing shows a positional accuracy and repeatability of approximately 20 μm or 0.004λ at 60 GHz. After implementation, programming, and testing, the system is used to measure gain patterns on three different mmW antennas. The radiation pattern of a 50–75 GHz standard gain horn antenna demonstrated the accurate measurement at the far‐field using the robotically controlled system. Furthermore, the characterization of the center element pattern of a 60 GHz phased array has shown that the measurements with this system are repeatable and suitable for arrays as well. Additionally, we performed near‐field measurements by successfully characterizing a 40–60 GHz horn antenna with a planar scan.more » « less
-
Abstract Sixth-generation wireless networks will aggregate higher-than-ever mobile traffic into ultra-high capacity backhaul links, which could be deployed on the largely untapped spectrum above 100 GHz. Current regulations however prevent the allocation of large contiguous bands for communications at these frequencies, since several narrow bands are reserved to protect passive sensing services. These include radio astronomy and Earth exploration satellites using sensors that suffer from harmful interference from active transmitters. Here we show that active and passive spectrum sharing above 100 GHz is feasible by introducing and experimentally evaluating a real-time, dual-band backhaul prototype that tracks the presence of passive users (in this case the NASA satellite Aura) and avoids interference by automatically switching bands (123.5–140 GHz and 210–225 GHz). Our system enables wide-band transmissions in the above-100-GHz spectrum, while avoiding harmful interference to satellite systems, paving the way for innovative spectrum policy and technologies in these crucial bands.more » « less
-
Abstract Very long baseline interferometry (VLBI) provides the highest-resolution images in astronomy. The sharpest resolution is nominally achieved at the highest frequencies, but as the observing frequency increases, so too does the atmospheric contribution to the system noise, degrading the sensitivity of the array and hampering detection. In this paper, we explore the limits of high-frequency VLBI observations usingngehtsim, a new tool for generating realistic synthetic data.ngehtsimuses detailed historical atmospheric models to simulate observing conditions, and it employs heuristic visibility detection criteria that emulate single- and multifrequency VLBI calibration strategies. We demonstrate the fidelity ofngehtsim’spredictions using a comparison with existing 230 GHz data taken by the Event Horizon Telescope (EHT), and we simulate the expected performance of EHT observations at 345 GHz. Though the EHT achieves a nearly 100% detection rate at 230 GHz, our simulations indicate that it should expect substantially poorer performance at 345 GHz; in particular, observations of M87* at 345 GHz are predicted to achieve detection rates of ≲20% that may preclude imaging. Increasing the array sensitivity through wider bandwidths and/or longer integration times—as enabled through, e.g., the simultaneous multifrequency upgrades envisioned for the next-generation EHT—can improve the 345 GHz prospects and yield detection levels that are comparable to those at 230 GHz. M87* and Sgr A* observations carried out in the atmospheric window around 460 GHz could expect to regularly achieve multiple detections on long baselines, but analogous observations at 690 and 875 GHz consistently obtain almost no detections at all.more » « less
-
Abstract: With the relatively recent realization that millimeter wave frequencies are viable for mobile communications, extensive measurements and research have been conducted on frequencies from 0.5 to 100 GHz, and several global wireless standard bodies have proposed channel models for frequencies below 100 GHz. Presently, little is known about the radio channel above 100 GHz where there are much wider unused bandwidth slots available. This paper summarizes wireless communication research and activities above 100 GHz, overviews the results of previously published propagation measurements at D-band (110-170 GHz), provides the design of a 140 GHz wideband channel sounder system, and proposes indoor wideband propagation measurements and penetration measurements for common materials at 140 GHz which were not previously investigated.more » « less
An official website of the United States government

