skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: 183 GHz Water Megamasers in Active Galactic Nuclei: A New Accretion Disk Tracer
Abstract We present the results of an Atacama Large Millimeter/submillimeter Array survey to identify 183 GHz H2O maser emission from active galactic nuclei (AGNs) already known to host 22 GHz megamaser systems. Out of 20 sources observed, we detect significant 183 GHz maser emission from 13; this survey thus increases the number of AGN known to host (sub)millimeter megamasers by a factor of 5. We find that the 183 GHz emission is systematically fainter than the 22 GHz emission from the same targets, with typical flux densities being roughly an order of magnitude lower at 183 GHz than at 22 GHz. However, the isotropic luminosities of the detected 183 GHz sources are comparable to their 22 GHz values. For two of our sources—ESO 269-G012 and the Circinus galaxy—we detect rich 183 GHz spectral structure containing multiple line complexes. The 183 GHz spectrum of ESO 269-G012 exhibits the triple-peaked structure characteristic of an edge-on AGN disk system. The Circinus galaxy contains the strongest 183 GHz emission detected in our sample, peaking at a flux density of nearly 5 Jy. The high signal-to-noise ratios achieved by these strong lines enable a coarse mapping of the 183 GHz maser system, in which the masers appear to be distributed similarly to those seen in VLBI maps of the 22 GHz system in the same galaxy and may be tracing the circumnuclear accretion disk at larger orbital radii than the 22 GHz masers. This newly identified population of AGN disk megamasers presents a motivation for developing VLBI capabilities at 183 GHz.  more » « less
Award ID(s):
1935980 2034306
PAR ID:
10414400
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
DOI PREFIX: 10.3847
Date Published:
Journal Name:
The Astrophysical Journal
Volume:
948
Issue:
2
ISSN:
0004-637X
Format(s):
Medium: X Size: Article No. 134
Size(s):
Article No. 134
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Using the Karl G. Jansky Very Large Array (VLA), we have conducted a survey for 22 GHz, 6 1,6 –5 2,3 H 2 O masers toward the Serpens South region. The masers were also observed with the Very Long Baseline Array following the VLA detections. We detect for the first time H 2 O masers in the Serpens South region that are found to be associated to three Class 0–Class I objects, including the two brightest protostars in the Serpens South cluster, known as CARMA-6 and CARMA-7. We also detect H 2 O masers associated to a source with no outflow or jet features. We suggest that this source is most probably a background asymptotic giant branch star projected in the direction of Serpens South. The spatial distribution of the emission spots suggest that the masers in the three Class 0–Class I objects emerge very close to the protostars and are likely excited in shocks driven by the interaction between a protostellar jet and the circumstellar material. Based on the comparison of the distributions of bolometric luminosity of sources hosting 22 GHz H 2 O masers and 162 young stellar objects covered by our observations, we identify a limit of L Bol ≈ 10 L ⊙ for a source to host water masers. However, the maser emission shows strong variability in both intensity and velocity spread, and therefore masers associated to lower-luminosity sources may have been missed by our observations. We also report 11 new sources with radio continuum emission at 22 GHz. 
    more » « less
  2. Abstract Henize 2–10 is a dwarf galaxy experiencing positive black hole (BH) feedback from a radio-detected low-luminosity active galactic nucleus. Previous Green Bank Telescope (GBT) observations detected a H2O “kilomaser” in Henize 2–10, but the low angular resolution (33″) left the location and origin of the maser ambiguous. We present new Karl G. Jansky Very Large Array observations of the H2O maser line at 22.23508 GHz in Henize 2–10 with ∼2″ resolution. These observations reveal two maser sources distinct in position and velocity. The first maser source is spatially coincident with the known BH outflow and the region of triggered star formation ∼70 pc to the east. Combined with the broad width of the maser (W50∼ 66 km s−1), this confirms our hypothesis that part of the maser detected with the GBT is produced by the impact of the BH outflow shocking the dense molecular gas along the flow and at the interface of the eastern star-forming region. The second maser source lies to the southeast, far from the central BH, and has a narrow width (W50∼ 8 km s−1), suggesting a star formation–related origin. This work has revealed the nature of the H2O kilomaser in Henize 2–10 and illustrates the first known connection between outflow-driven H2O masers and positive BH feedback. 
    more » « less
  3. Hirota, T; Imai, H; Menten, K; Pihlström, Y (Ed.)
    Abstract Stellar SiO masers are found in the atmospheres of asymptotic giant branch (AGB) stars with several maser transitions observed around 43 and 86 GHz. At least 28 SiO maser stars have been detected within ∼2 pc projected distance from Sgr A* by the Very Large Array (VLA) and Atacama Millimeter/submillimeter Array (ALMA). A subset of these masers have been studied for several decades and form the basis of the radio reference frame that anchors the reference frame for infrared stars in the Galactic Center (GC). We present new observations of the GC masers from VLA and ALMA. These new data combined with extant maser astrometry provide 3D positions, velocities, and acceleration limits. The proper motions and Doppler velocities are measured with unprecedented precision for these masers. We further demonstrate how these measurements may be used to trace the stellar and dark matter mass distributions within a few pc of Sgr A*. 
    more » « less
  4. Abstract At centimeter wavelengths, single-dish observations have suggested that the Sagittarius (Sgr) B2 molecular cloud at the Galactic Center hosts weak maser emission from several organic molecules, including CH2NH, HNCNH, and HCOOCH3. However, the lack of spatial distribution information on these new maser species has prevented us from assessing the excitation conditions of the maser emission as well as their pumping mechanisms. Here, we present a mapping study toward Sgr B2 north (N) to locate the region where the complex maser emission originates. We report the first detection of the Class I methanol (CH3OH) maser at 84 GHz and the first interferometric map of the methanimine (CH2NH) maser at 5.29 GHz toward this region. In addition, we present a tool for modeling and fitting the unsaturated molecular maser signals with non-LTE radiative transfer models and Bayesian analysis using the Markov Chain Monte Carlo approach. These enable us to quantitatively assess the observed spectral profiles. The results suggest a two-chain-clump model for explaining the intense CH3OH Class I maser emission toward a region with low continuum background radiation. By comparing the spatial origin and extent of maser emission from several molecular species, we find that the 5.29 GHz CH2NH maser has a close spatial relationship with the 84 GHz CH3OH Class I masers. This relationship serves as observational evidence to suggest a similar collisional pumping mechanism for these maser transitions. 
    more » « less
  5. null (Ed.)
    We present the serendipitous detection of the two main OH maser lines at 1667 and 1665 MHz associated with IRAS 10597+5926 at z ⊙  = 0.19612 in the untargeted Apertif Wide-area Extragalactic imaging Survey (AWES), and the subsequent measurement of the OH 1612 MHz satellite line in the same source. With a total OH luminosity of log( L / L ⊙ ) = 3.90 ± 0.03, IRAS 10597+5926 is the fourth brightest OH megamaser (OHM) known. We measure a lower limit for the 1667/1612 ratio of R 1612  > 45.9, which is the highest limiting ratio measured for the 1612 MHz OH satellite line to date. OH satellite line measurements provide a potentially valuable constraint by which to compare detailed models of OH maser pumping mechanisms. Optical imaging shows that the galaxy is likely a late-stage merger. Based on published infrared and far ultraviolet fluxes, we find that the galaxy is an ultra-luminous infrared galaxy (ULIRG) with log( L TIR / L ⊙ ) = 12.24 that is undergoing a starburst with an estimated star formation rate of 179 ± 40 M ⊙ yr −1 . These host galaxy properties are consistent with the physical conditions responsible for very bright OHM emission. Finally, we provide an update on the predicted number of OH masers that may be found in AWES and estimate the total number of OH masers that will be detected in each of the individual main and satellite OH 18 cm lines. 
    more » « less