skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: täkō: a polymorphic cache hierarchy for general-purpose optimization of data movement
Current systems hide data movement from software behind the load-store interface. Software’s inability to observe and respond to data movement is the root cause of many inefficiencies, including the growing fraction of execution time and energy devoted to data movement itself. Recent specialized memory-hierarchy designs prove that large data-movement savings are possible. However, these designs require custom hardware, raising a large barrier to their practical adoption. This paper argues that the hardware-software interface is the problem, and custom hardware is often unnecessary with an expanded interface. The täkō architecture lets software observe data movement and interpose when desired. Specifically, caches in täkō can trigger software callbacks in response to misses, evictions, and writebacks. Callbacks run on reconfigurable dataflow engines placed near caches. Five case studies show that this interface covers a wide range of data-movement features and optimizations. Microarchitecturally, täkō is similar to recent near-data computing designs, adding ≈5% area to a baseline multicore. täkō improves performance by 1.4×–4.2×, similar to prior custom hardware designs, and comes within 1.8% of an idealized implementation.  more » « less
Award ID(s):
1845986
PAR ID:
10347602
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
International Symposium on Computer Architecture
Page Range / eLocation ID:
42 to 58
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The memory wall challenge -- the growing disparity between CPU speed and memory speed -- has been one of the most critical and long-standing challenges in computing. For high performance computing, programming to achieve efficient execution of parallel applications often requires more tuning and optimization efforts to improve data and memory access than for managing parallelism. The situation is further complicated by the recent expansion of the memory hierarchy, which is becoming deeper and more diversified with the adoption of new memory technologies and architectures such as 3D-stacked memory, non-volatile random-access memory (NVRAM), and hybrid software and hardware caches. The authors believe it is important to elevate the notion of memory-centric programming, with relevance to the compute-centric or data-centric programming paradigms, to utilize the unprecedented and ever-elevating modern memory systems. Memory-centric programming refers to the notion and techniques of exposing hardware memory system and its hierarchy, which could include DRAM and NUMA regions, shared and private caches, scratch pad, 3-D stacked memory, non-volatile memory, and remote memory, to the programmer via portable programming abstractions and APIs. These interfaces seek to improve the dialogue between programmers and system software, and to enable compiler optimizations, runtime adaptation, and hardware reconfiguration with regard to data movement, beyond what can be achieved using existing parallel programming APIs. In this paper, we provide an overview of memory-centric programming concepts and principles for high performance computing. 
    more » « less
  2. Cloud deployments now increasingly exploit Field-Programmable Gate Array (FPGA) accelerators as part of virtual instances. While cloud FPGAs are still essentially single-tenant, the growing demand for efficient hardware acceleration paves the way to FPGA multi-tenancy. It then becomes necessary to explore architectures, design flows, and resource management features that aim at exposing multi-tenant FPGAs to the cloud users. In this article, we discuss a hardware/software architecture that supports provisioning space-shared FPGAs in Kernel-based Virtual Machine (KVM) clouds. The proposed hardware/software architecture introduces an FPGA organization that improves hardware consolidation and support hardware elasticity with minimal data movement overhead. It also relies on VirtIO to decrease communication latency between hardware and software domains. Prototyping the proposed architecture with a Virtex UltraScale+ FPGA demonstrated near specification maximum frequency for on-chip data movement and high throughput in virtual instance access to hardware accelerators. We demonstrate similar performance compared to single-tenant deployment while increasing FPGA utilization, which is one of the goals of virtualization. Overall, our FPGA design achieved about 2× higher maximum frequency than the state of the art and a bandwidth reaching up to 28 Gbps on 32-bit data width. 
    more » « less
  3. null (Ed.)
    Non-volatile memory (NVRAM) based on phase-change memory (such as Optane DC Persistent Memory Module) is making its way into Intel servers to address the needs of emerging applications that have a huge memory footprint. These systems have both DRAM and NVRAM on the same memory channel with the smaller capacity DRAM serving as a cache to the larger capacity NVRAM in the so called 2LM mode. In this work we analyze the performance of such DRAM caches on real hardware using a broad range of synthetic and real-world benchmarks. We identify three key limitations of DRAM caches in these emerging systems which prevent large-scale, bandwidth bound applications from taking full advantage of NVRAM read and write bandwidth. We show that software based techniques are necessary for orchestrating the data movement between DRAM and PMM for such workloads to take full advantage of these new heterogeneous memory systems. 
    more » « less
  4. In-memory computing with large last-level caches is promising to dramatically alleviate data movement bottlenecks and expose massive bitline-level parallelization opportunities. However, key challenges from its unique execution model remain unsolved: automated parallelization, transparently orchestrating data transposition/alignment/broadcast for bit-serial logic, and mixing in-/near-memory computing. Most importantly, the solution should be programmer friendly and portable across platforms. Our key innovation is an execution model and intermediate representation (IR) that enables hybrid CPU-core, in-memory, and near-memory processing. Our IR is the tensor dataflow graph (tDFG), which is a unified representation of in-memory and near-memory computation. The tDFG exposes tensor-data structure information so that the hardware and runtime can automatically orchestrate data management for bitserial execution, including runtime data layout transformations. To enable microarchitecture portability, we use a two-phase, JIT-based compilation approach to dynamically lower the tDFG to in-memory commands. Our design, infinity stream, is evaluated on a cycle-accurate simulator. Across data-processing workloads with fp32, it achieves 2.6× speedup and 75% traffic reduction over a state-of-the-art near-memory computing technique, with 2.4× energy efficiency. 
    more » « less
  5. Extensibility is an important design goal for software frameworks that are expected to evolve in a variety of dimensions. Callback mechanism is utilized extensively in large frameworks to achieve extensibility. However, callback mechanism introduces implicit control-flow dependencies that make program comprehension and analysis difficult. This paper presents an automated approach for detecting deep bugs/vulnerabilities that involve callbacks. Our approach consists of several stages to balance scalability and precision. Specifically, it uses a light-weight static analysis for extracting callback related interactions between the application modules and the framework modules. This information is used to extend the basic call graph of the application modules to incorporate implicit call chains due to callbacks. The second stage, summary mode, summarizes bug relevant data-flow facts for paths that start at callbacks. The third stage, summary-aware mode, uses the extended call graph to incorporate data-flow facts due to implicit paths that lead to the callbacks and detects deep bugs. We have implemented the presented model extraction and bug detection approach in a framework called MOXCAFE and applied it to Linux device drivers. Using our approach, we could detect several deep vulnerabilities. 
    more » « less