skip to main content


Title: Simulations of primary beam effects on the cosmic bispectrum phase observed with the Hydrogen Epoch of Reionization Array
ABSTRACT The 21 cm transition from neutral hydrogen promises to be the best observational probe of the epoch of reionization (EoR). The main difficulty in measuring the 21 cm signal is the presence of bright foregrounds that require very accurate interferometric calibration. Closure quantities may circumvent the calibration requirements but may be, however, affected by direction-dependent effects, particularly antenna primary beam responses. This work investigates the impact of antenna primary beams affected by mutual coupling on the closure phase and its power spectrum. Our simulations show that primary beams affected by mutual coupling lead to a leakage of foreground power into the EoR window, which can be up to ∼104 times higher than the case where no mutual coupling is considered. This leakage is, however, essentially confined at k < 0.3 h Mpc−1 for triads that include 29 m baselines. The leakage magnitude is more pronounced when bright foregrounds appear in the antenna sidelobes, as expected. Finally, we find that triads that include mutual coupling beams different from each other have power spectra similar to triads that include the same type of mutual coupling beam, indicating that beam-to-beam variation within triads (or visibility pairs) is not the major source of foreground leakage in the EoR window.  more » « less
Award ID(s):
1836019
NSF-PAR ID:
10347611
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Monthly Notices of the Royal Astronomical Society
Volume:
512
Issue:
2
ISSN:
0035-8711
Page Range / eLocation ID:
2716 to 2727
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    ABSTRACT The 21 cm hyperfine transition of neutral hydrogen offers a promising probe of the large-scale structure of the universe before and during the Epoch of Reionization (EoR), when the first ionizing sources formed. Bright radio emission from foreground sources remains the biggest obstacle to detecting the faint 21 cm signal. However, the expected smoothness of foreground power leaves a clean window in Fourier space where the EoR signal can potentially be seen over thermal noise. Though the boundary of this window is well defined in principle, spectral structure in foreground sources, instrumental chromaticity, and choice of spectral weighting in analysis all affect how much foreground power spills over into the EoR window. In this paper, we run a suite of numerical simulations of wide-field visibility measurements, with a variety of diffuse foreground models and instrument configurations, and measure the extent of contaminated Fourier modes in the EoR window using a delay-transform approach to estimate power spectra. We also test these effects with a model of the Hydrogen Epoch of Reionization Array (HERA) antenna beam generated from electromagnetic simulations, to take into account further chromatic effects in the real instrument. We find that foreground power spillover is dominated by the so-called pitchfork effect, in which diffuse foreground power is brightened near the horizon due to the shortening of baselines. As a result, the extent of contaminated modes in the EoR window is largely constant over time, except when the Galaxy is near the pointing centre. 
    more » « less
  2. ABSTRACT

    Radio interferometers aiming to measure the power spectrum of the redshifted 21 cm line during the Epoch of Reionization (EoR) need to achieve an unprecedented dynamic range to separate the weak signal from overwhelming foreground emissions. Calibration inaccuracies can compromise the sensitivity of these measurements to the effect that a detection of the EoR is precluded. An alternative to standard analysis techniques makes use of the closure phase, which allows one to bypass antenna-based direction-independent calibration. Similarly to standard approaches, we use a delay spectrum technique to search for the EoR signal. Using 94 nights of data observed with Phase I of the Hydrogen Epoch of Reionization Array (HERA), we place approximate constraints on the 21 cm power spectrum at z = 7.7. We find at 95 per cent confidence that the 21 cm EoR brightness temperature is ≤(372)2 ‘pseudo’ mK2 at 1.14 ‘pseudo’ h Mpc−1, where the ‘pseudo’ emphasizes that these limits are to be interpreted as approximations to the actual distance scales and brightness temperatures. Using a fiducial EoR model, we demonstrate the feasibility of detecting the EoR with the full array. Compared to standard methods, the closure phase processing is relatively simple, thereby providing an important independent check on results derived using visibility intensities, or related.

     
    more » « less
  3. null (Ed.)
    ABSTRACT In 21-cm cosmology, precision calibration is key to the separation of the neutral hydrogen signal from very bright but spectrally smooth astrophysical foregrounds. The Hydrogen Epoch of Reionization Array (HERA), an interferometer specialized for 21-cm cosmology and now under construction in South Africa, was designed to be largely calibrated using the self-consistency of repeated measurements of the same interferometric modes. This technique, known as redundant-baseline calibration resolves most of the internal degrees of freedom in the calibration problem. It assumes, however, on antenna elements with identical primary beams placed precisely on a redundant grid. In this work, we review the detailed implementation of the algorithms enabling redundant-baseline calibration and report results with HERA data. We quantify the effects of real-world non-redundancy and how they compare to the idealized scenario in which redundant measurements differ only in their noise realizations. Finally, we study how non-redundancy can produce spurious temporal structure in our calibration solutions – both in data and in simulations – and present strategies for mitigating that structure. 
    more » « less
  4. ABSTRACT

    Cosmic dawn, the onset of star formation in the early universe, can in principle be studied via the 21-cm transition of neutral hydrogen, for which a sky-averaged absorption signal, redshifted to MHz frequencies, is predicted to be O(10–100) mK. Detection requires separation of the 21-cm signal from bright chromatic foreground emission due to Galactic structure, and the characterization of how it couples to instrumental response. In this work, we present characterization of antenna gain patterns for the Large-aperture Experiment to detect the Dark Ages (LEDA) via simulations, assessing the effects of the antenna ground-plane geometries used, and measured soil properties. We then investigate the impact of beam pattern uncertainties on the reconstruction of a Gaussian absorption feature. Assuming the pattern is known and correcting for the chromaticity of the instrument, the foregrounds can be modelled with a log-polynomial, and the 21-cm signal identified with high accuracy. However, uncertainties on the soil properties lead to percentage changes in the chromaticity that can bias the signal recovery. The bias can be up to a factor of two in amplitude and up to few  per cent in the frequency location. These effects do not appear to be mitigated by larger ground planes, conversely gain patterns with larger ground planes exhibit more complex frequency structure, significantly compromising the parameter reconstruction. Our results, consistent with findings from other antenna design studies, emphasize the importance of chromatic response and suggest caution in assuming log-polynomial foreground models in global signal experiments.

     
    more » « less
  5. null (Ed.)
    Abstract The detection of the Epoch of Reionization (EoR) delay power spectrum using a ”foreground avoidance method” highly depends on the instrument chromaticity. The systematic effects induced by the radio-telescope spread the foreground signal in the delay domain, which contaminates the EoR window theoretically observable. Applied to the Hydrogen Epoch of Reionization Array (HERA), this paper combines detailed electromagnetic and electrical simulations in order to model the chromatic effects of the instrument, and quantify its frequency and time responses. In particular, the effects of the analogue receiver, transmission cables, and mutual coupling are included. These simulations are able to accurately predict the intensity of the reflections occurring in the 150-m cable which links the antenna to the back-end. They also show that electromagnetic waves can propagate from one dish to another one through large sections of the array due to mutual coupling. The simulated system time response is attenuated by a factor 104 after a characteristic delay which depends on the size of the array and on the antenna position. Ultimately, the system response is attenuated by a factor 105 after 1400 ns because of the reflections in the cable, which corresponds to characterizable k∥-modes above 0.7 $h\,\,\rm {Mpc}^{-1}$ at 150 MHz. Thus, this new study shows that the detection of the EoR signal with HERA Phase I will be more challenging than expected. On the other hand, it improves our understanding of the telescope, which is essential to mitigate the instrument chromaticity. 
    more » « less