skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: A Long-Term Study of Ultraluminous X-ray Sources in NGC 891
We perform empirical fits to the Chandra and XMM-Newton spectra of three ultraluminous X-ray sources (ULXs) in the edge-on spiral galaxy NGC 891, monitoring the region over a 17-year time window. One of these sources was visible since the early 1990s with ROSAT and was observed multiple times with Chandra and XMM-Newton. Another was visible since 2011. We build upon prior analyses of these sources by analyzing all available data at all epochs. Where possible Chandra data is used, since its superior spatial resolution allows for more effective isolation of the emission from each individual source, thus providing a better determination of their spectral properties. We also identify a new transient ULX, CXOU J022230.1+421937, which faded from view over the course of a two month period from Nov 2016 to Jan 2017. Modeling of each source at every epoch was conducted using six different models ranging from thermal bremsstrahlung to accretion disk models. Unfortunately, but as is common with many ULXs, no single model yielded a much better fit than the others. The two known sources had unabsorbed luminosities that remained fairly consistent over five or more years. Various possibilities for the new transient ULX are explored.  more » « less
Award ID(s):
1911061
PAR ID:
10347644
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Universe
Volume:
8
Issue:
1
ISSN:
2218-1997
Page Range / eLocation ID:
18
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Galactic X-ray sources are diverse, ranging from active M dwarfs to compact object binaries, and everything in between. The X-ray landscape of today is rich, with point source catalogs such as those from XMM-Newton, Chandra, and Swift, each with ≳105sources and growing. Furthermore, X-ray astronomy is on the verge of being transformed through data releases from the all-sky SRG/eROSITA survey. Many X-ray sources can be associated with an optical counterpart, which in the era of Gaia, can be determined to be Galactic or extragalactic through parallax and proper motion information. Here, I present a simple diagram—the “X-ray Main Sequence,” which distinguishes between compact objects and active stars based on their optical color and X-ray-to-optical flux ratio (FX/Fopt). As a proof of concept, I present optical spectroscopy of six exotic accreting WDs discovered using the X-ray Main Sequence as applied to the XMM-Newton catalog. Looking ahead to surveys of the near future, I additionally present SDSS-V optical spectroscopy of new systems discovered using the X-ray Main Sequence as applied to the SRG/eROSITA eFEDS catalog. 
    more » « less
  2. ABSTRACT We present the analysis of deep X-ray observations of 10 massive galaxy clusters at redshifts 1.05 < z < 1.71, with the primary goal of measuring the metallicity of the intracluster medium (ICM) at intermediate radii, to better constrain models of the metal enrichment of the intergalactic medium. The targets were selected from X-ray and Sunyaev–Zel’dovich effect surveys, and observed with both the XMM–Newton and Chandra satellites. For each cluster, a precise gas mass profile was extracted, from which the value of r500 could be estimated. This allows us to define consistent radial ranges over which the metallicity measurements can be compared. In general, the data are of sufficient quality to extract meaningful metallicity measurements in two radial bins, r < 0.3r500 and 0.3 < r/r500 < 1.0. For the outer bin, the combined measurement for all 10 clusters, Z/Z⊙ = 0.21 ± 0.09, represents a substantial improvement in precision over previous results. This measurement is consistent with, but slightly lower than, the average metallicity of 0.315 solar measured at intermediate-to-large radii in low-redshift clusters. Combining our new high-redshift data with the previous low-redshift results allows us to place the tightest constraints to date on models of the evolution of cluster metallicity at intermediate radii. Adopting a power-law model of the form Z ∝ (1 + z)γ, we measure a slope $$\gamma = -0.5^{+0.4}_{-0.3}$$, consistent with the majority of the enrichment of the ICM having occurred at very early times and before massive clusters formed, but leaving open the possibility that some additional enrichment in these regions may have occurred since a redshift of 2. 
    more » « less
  3. Abstract Pulsar halos are regions around middle-aged pulsars extending out to tens of parsecs. The large extent of the halos and well-defined central cosmic-ray accelerators make this new class of Galactic sources an ideal laboratory for studying cosmic-ray transport. LHAASO J0621+3755 is a candidate pulsar halo associated with the middle-aged gamma-ray pulsar PSR J0622+3749. We observed LHAASO J0621+3755 with VERITAS and XMM-Newton in the TeV and X-ray bands, respectively. For this work, we developed a novel background estimation technique for imaging atmospheric Cherenkov telescope observations of such extended sources. No halo emission was detected with VERITAS (0.3–10 TeV) or XMM-Newton (2–7 keV) within 1and 1 0 around PSR J0622+3749, respectively. Combined with the LHAASO Kilometer Square Array (KM2A) and Fermi-LAT data, VERITAS flux upper limits establish a spectral break at  ∼1–10 TeV, a unique feature compared with Geminga, the most studied pulsar halo. We model the gamma-ray spectrum and LHAASO-KM2A surface brightness as inverse Compton emission and find suppressed diffusion around the pulsar, similar to Geminga. A smaller diffusion suppression zone and harder electron injection spectrum than Geminga are necessary to reproduce the spectral cutoff. A magnetic field ≤1μG is required by our XMM-Newton observation and synchrotron spectral modeling, consistent with Geminga. Our findings support slower diffusion and lower magnetic field around pulsar halos than the Galactic averages, hinting at magnetohydrodynamic turbulence around pulsars. Additionally, we report the detection of an X-ray point source spatially coincident with PSR J0622+3749, whose periodicity is consistent with the gamma-ray spin period of 333.2 ms. The soft spectrum of this source suggests a thermal origin. 
    more » « less
  4. ABSTRACT The globular cluster ultraluminous X-ray source, RZ 2109, is a complex and unique system that has been detected at X-ray, ultraviolet, and optical wavelengths. Based on almost 20 yr of Chandra and XMM–Newton observations, the X-ray luminosity exhibits order of magnitude variability, with the peak flux lasting on the order of a few hours. We perform robust time series analysis on the archival X-ray observations and find that this variability is periodic on a time-scale of 1.3 ± 0.04 d. The source also demonstrates broad [O iii] λ5007 emission, which has been observed since 2004, suggesting a white dwarf donor and therefore an ultra-compact X-ray binary. We present new spectra from 2020 and 2022, marking 18 yr of observed [O iii] emission from this source. Meanwhile, we find that the globular cluster counterpart is unusually bright in the NUV/UVW2 band. Finally, we discuss RZ 2109 in the context of the eccentric Kozai–Lidov mechanism and show that the observed 1.3 d periodicity can be used to place constraints on the tertiary configuration, ranging from 20 min (for a 0.1 M⊙ companion) to approximately 95 min (for a 1 M⊙ companion), if the eccentric Kozai–Lidov mechanism is at the origin of the periodic variability. 
    more » « less
  5. Abstract We present a large sample of infrared-luminous candidate active galactic nuclei (AGNs) that lack X-ray detections in Chandra, XMM-Newton, and NuSTAR fields. We selected all optically detected SDSS sources with redshift measurements, combined additional broadband photometry from WISE, UKIDSS, 2MASS, and GALEX, and modeled the spectral energy distributions (SEDs) of our sample sources. We parameterize nuclear obscuration in our SEDs with and uncover thousands of powerful obscured AGNs that lack X-ray counterparts, many of which are identified as AGN candidates based on straightforward WISE photometric criteria. Using the observed luminosity correlation between rest-frame 2–10 keV ( ) and rest-frame AGN ( ), we estimate the intrinsic X-ray luminosities of our sample sources and combine these data with flux limits from X-ray catalogs to determine lower limits on nuclear obscuration. Using the ratio of intrinsic-to-observed X-ray luminosity ( ), we find a significant fraction of sources with column densities approaching  cm –2 , suggesting that multiwavelength observations are necessary to account for the population of heavily obscured AGNs. We simulate the underlying distribution for the X-ray non-detected sources in our sample through survival analysis, and confirm the presence of AGN activity via X-ray stacking. Our results point to a considerable population of extremely obscured AGNs undetected by current X-ray observatories. 
    more » « less