skip to main content


Search for: All records

Award ID contains: 1911061

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. ABSTRACT

    We report on Chandra X-ray observations of SN 2016jae and SN 2018cqj, both low-luminosity Type Ia supernova (SN) that showed the presence of an H line in their early optical spectrum. No X-ray emission is detected at the location of either SN. Upper limits to the luminosity of up to 2 $\times 10^{40}$ erg s$^{-1}$ are calculated for each SN, depending on the assumed spectral model, temperature, and column density. This luminosity is comparable to that of another low-luminosity Type Ia SN, SN 2018fhw, that was observed with Chandra. It is generally lower than upper limits calculated for Type Ia-CSM SNe observed in X-rays, and also below that of SN 2012ca, the only Type Ia-CSM SN to have been detected in X-rays. Comparisons are made to other Type Ia SN with an H line observed in X-rays. The observations suggest that while the density into which the SN is expanding may have been high at the time the H$\alpha$ line was detected, it had decreased considerably by the time of X-ray observations.

     
    more » « less
  2. Abstract

    I report on Chandra X-ray observations of SN 2018cqj, a low luminosity Type Ia supernova that showed an Hαline in its optical spectrum. No X-ray emission was detected at the location of the SN, with an upper limit to the X-ray luminosity of 2 × 1039erg s−1.

     
    more » « less
  3. Abstract

    Approximately one hundred sources of very-high-energy (VHE) gamma rays are known in the Milky Way, detected with a combination of targeted observations and surveys. A survey of the entire Galactic Plane in the energy range from a few tens of GeV to a few hundred TeV has been proposed as a Key Science Project for the upcoming Cherenkov Telescope Array Observatory (CTAO). This article presents the status of the studies towards the Galactic Plane Survey (GPS). We build and make publicly available a sky model that combines data from recent observations of known gamma-ray emitters with state-of-the-art physically-driven models of synthetic populations of the three main classes of established Galactic VHE sources (pulsar wind nebulae, young and interacting supernova remnants, and compact binary systems), as well as of interstellar emission from cosmic-ray interactions in the Milky Way. We also perform an optimisation of the observation strategy (pointing pattern and scheduling) based on recent estimations of the instrument performance. We use the improved sky model and observation strategy to simulate GPS data corresponding to a total observation time of 1620 hours spread over ten years. Data are then analysed using the methods and software tools under development for real data. Under our model assumptions and for the realisation considered, we show that the GPS has the potential to increase the number of known Galactic VHE emitters by almost a factor of five. This corresponds to the detection of more than two hundred pulsar wind nebulae and a few tens of supernova remnants at average integral fluxes one order of magnitude lower than in the existing sample above 1 TeV, therefore opening the possibility to perform unprecedented population studies. The GPS also has the potential to provide new VHE detections of binary systems and pulsars, to confirm the existence of a hypothetical population of gamma-ray pulsars with an additional TeV emission component, and to detect bright sources capable of accelerating particles to PeV energies (PeVatrons). Furthermore, the GPS will constitute a pathfinder for deeper follow-up observations of these source classes. Finally, we show that we can extract from GPS data an estimate of the contribution to diffuse emission from unresolved sources, and that there are good prospects of detecting interstellar emission and statistically distinguishing different scenarios.Thus, a survey of the entire Galactic plane carried out from both hemispheres with CTAO will ensure a transformational advance in our knowledge of Galactic VHE source populations and interstellar emission.

     
    more » « less
    Free, publicly-accessible full text available October 1, 2025
  4. Abstract

    Galaxy clusters are expected to be both dark matter (DM) reservoirs and storage rooms for the cosmic-ray protons (CRp) that accumulate along the cluster's formation history. Accordingly, they are excellent targets to search for signals of DM annihilation and decay atγ-ray energies and are predicted to be sources of large-scaleγ-ray emission due to hadronic interactions in the intracluster medium (ICM).In this paper, we estimate the sensitivity of the Cherenkov Telescope Array (CTA) to detect diffuseγ-ray emission from the Perseus galaxy cluster.We first perform a detailed spatial and spectral modelling of the expected signal for both the DM and the CRp components. For each case, we compute the expected CTA sensitivity accounting for the CTA instrument response functions. The CTA observing strategy of the Perseus cluster is also discussed.In the absence of a diffuse signal (non-detection), CTA should constrain the CRp to thermal energy ratioX500within the characteristic radiusR500down to aboutX500< 3 × 10-3, for a spatial CRp distribution that follows the thermal gas and a CRp spectral index αCRp= 2.3. Under the optimistic assumption of a pure hadronic origin of the Perseus radio mini-halo and depending on the assumed magnetic field profile, CTA should measure αCRpdown to about ΔαCRp≃ 0.1 and the CRp spatial distribution with 10% precision, respectively. Regarding DM, CTA should improve the current ground-basedγ-ray DM limits from clusters observations on the velocity-averaged annihilation cross-section by a factor of up to ∼ 5, depending on the modelling of DM halo substructure. In the case of decay of DM particles, CTA will explore a new region of the parameter space, reaching models withτχ> 1027s for DM masses above 1 TeV.These constraints will provide unprecedented sensitivity to the physics of both CRp acceleration and transport at cluster scale and to TeV DM particle models, especially in the decay scenario.

     
    more » « less
    Free, publicly-accessible full text available October 1, 2025
  5. Abstract

    Monochromatic gamma-ray signals constitute a potential smoking gun signature for annihilating or decaying dark matter particles that could relatively easily be distinguished from astrophysical or instrumental backgrounds. We provide an updated assessment of the sensitivity of the Cherenkov Telescope Array (CTA) to such signals, based on observations of the Galactic centre region as well as of selected dwarf spheroidal galaxies. We find that current limits and detection prospects for dark matter masses above 300 GeV will be significantly improved, by up to an order of magnitude in the multi-TeV range. This demonstrates that CTA will set a new standard for gamma-ray astronomy also in this respect, as the world's largest and most sensitive high-energy gamma-ray observatory, in particular due to its exquisite energy resolution at TeV energies and the adopted observational strategy focussing on regions with large dark matter densities. Throughout our analysis, we use up-to-date instrument response functions, and we thoroughly model the effect of instrumental systematic uncertainties in our statistical treatment. We further present results for other potential signatures with sharp spectral features, e.g. box-shaped spectra, that would likewise very clearly point to a particle dark matter origin.

     
    more » « less
    Free, publicly-accessible full text available July 1, 2025
  6. ABSTRACT

    We present broad-band radio flux-density measurements supernova (SN) 1996cr, made with MeerKAT, ATCA, and ALMA, and images made from very long baseline interferometry (VLBI) observations with the Australian Long Baseline Array. The spectral energy distribution of SN 1996cr in 2020, at age t ∼8700 d, is a power-law, with flux density, S ∝ ν−0.588 ± 0.011 between 1 and 34 GHz, but may steepen at >35 GHz. The spectrum has flattened since t = 5370 d (2010). Also since t = 5370 d, the flux density has declined rapidly, with $S_{\rm 9 \, GHz} \propto t^{-2.9}$. The VLBI image at t = 8859 d shows an approximately circular structure with a central minimum reminiscent of an optically-thin spherical shell of emission. For a distance of 3.7 Mpc, the average outer radius of the radio emission at t = 8859 d was (5.1 ± 0.3) × 1017 cm, and SN 1996cr has been expanding with a velocity of 4650 ± 1060 km s−1 between t = 4307 and 8859 d. It must have undergone considerable deceleration before t = 4307 d. Deviations from a circular shell structure in the image suggest a range of velocities up to ∼7000 km s−1, and hint at the presence of a ring- or equatorial-belt-like structure rather than a complete spherical shell.

     
    more » « less
  7. ABSTRACT

    We report on Chandra X-ray observations of ASASSN-18tb/SN 2018fhw, a low luminosity Type Ia supernova (SN) that showed a H line in its optical spectrum. No X-ray emission was detected at the location of the SN. Upper limits to the luminosity of up to 3 × 1039 erg s−1 are calculated, depending on the assumed spectral model, temperature, and column density. These are compared to Type Ia-CSM SNe, SN 2005gj, and SN 2002ic that have been observed with Chandra in the past. The upper limits are lower than the X-ray luminosity found for the Type Ia-CSM SN 2012ca, the only Type Ia SN to have been detected in X-rays. Consideration of various scenarios for the Hα line suggests that the density of the surrounding medium at the time of Hα line detection could have been as high as 108 cm−3, but must have decreased below 5 $\times \, 10^6$ cm−3 at the time of X-ray observation. Continual X-ray observations of SNe which show a H line in their spectrum are necessary in order to establish Type Ia SNe as an X-ray emitting class.

     
    more » « less
  8. Abstract

    Superluminous supernovae (SLSNe) are a rare class of stellar explosions with luminosities ∼ 10–100 times greater than ordinary core-collapse supernovae. One popular model to explain the enhanced optical output of hydrogen-poor (Type I) SLSNe invokes energy injection from a rapidly spinning magnetar. A prediction in this case is that high-energy gamma-rays, generated in the wind nebula of the magnetar, could escape through the expanding supernova ejecta at late times (months or more after optical peak). This paper presents a search for gamma-ray emission in the broad energy band from 100 MeV to 30 TeV from two Type I SLSNe, SN2015bn, and SN2017egm, using observations from Fermi-LAT and VERITAS. Although no gamma-ray emission was detected from either source, the derived upper limits approach the putative magnetar’s spin-down luminosity. Prospects are explored for detecting very-high-energy (VHE; 100 GeV–100 TeV) emission from SLSNe-I with existing and planned facilities such as VERITAS and CTA.

     
    more » « less
  9. ABSTRACT

    We probe the environmental properties of X-ray supernova remnants (SNRs) at various points along their evolutionary journey, especially the S-T phase, and their conformance with theoretically derived models of SNR evolution. The remnant size is used as a proxy for the age of the remnant. Our data set includes 34 Milky Way, 59 Large Magellanic Cloud (LMC), and 5 Small Magellanic Cloud (SMC) SNRs. We select remnants that have been definitively typed as either core-collapse (CC) or Type Ia supernovae, with well-defined size estimates, and a thermal X-ray flux measured over the entire remnant. A catalog of SNR size and X-ray luminosity is presented and plotted, with ambient density and age estimates from the literature. Model remnants with a given density, in the Sedov-Taylor (S-T) phase, are overplotted on the diameter-versus-luminosity plot, allowing the evolutionary state and physical properties of SNRs to be compared to each other, and to theoretical models. We find that small, young remnants are predominantly Type Ia remnants or high luminosity CCs, suggesting that many CC SNRs are not detected until after they have emerged from the progenitor’s wind-blown bubble. An examination of the distribution of SNR diameters in the Milky Way and LMC reveals that LMC SNRs must be evolving in an ambient medium which is 30 per cent as dense as that in the Milky Way. This is consistent with ambient density estimates for the Galaxy and LMC.

     
    more » « less
  10. Abstract

    SN 2014C was originally classified as a Type Ib supernova, but at phaseϕ= 127 days, post-explosion strong Hαemission was observed. SN 2014C has since been observed in radio, infrared, optical and X-ray bands. Here we present new optical spectroscopic and photometric data spanningϕ= 947–2494 days post-explosion. We address the evolution of the broadened Hαemission line, as well as broad [Oiii] emission and other lines. We also conduct a parallel analysis of all publicly available multiwavelength data. From our spectra, we find a nearly constant HαFWHM velocity width of ∼2000 km s−1that is significantly lower than that of other broadened atomic transitions (∼3000–7000 km s−1) present in our spectra ([Oi]λ6300; [Oiii]λλ4959, 5007; Heiλ7065; [Caii]λλ7291, 7324). The late radio data demand a fast forward shock (∼10,000 km s−1atϕ= 1700 days) in rarified matter that contrasts with the modest velocity of the Hα. We propose that the infrared flux originates from a toroidal-like structure of hydrogen surrounding the progenitor system, while later emission at other wavelengths (radio, X-ray) likely originates predominantly from the reverse shock in the ejecta and the forward shock in the quasi-spherical progenitor He-wind. We propose that the Hαemission arises in the boundary layer between the ejecta and torus. We also consider the possible roles of a pulsar and a binary companion.

     
    more » « less