skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Laser Diffraction Zones and Spots from Three-Dimensional Graded Photonic Super-Crystals and Moiré Photonic Crystals
The laser diffraction from periodic structures typically shows isolated and sharp point patterns at zeroth and ±nth orders. Diffraction from 2D graded photonic super-crystals (GPSCs) has demonstrated over 1000 spots due to the fractional diffractions. Here, we report the holographic fabrication of three types of 3D GPSCs through nine beam interferences and their characteristic diffraction patterns. The diffraction spots due to the fractional orders are merged into large-area diffraction zones for these three types of GPSCs. Three distinguishable diffraction patterns have been observed: (a) 3 × 3 Diffraction zones for GPSCs with a weak gradient in unit super-cell, (b) 5 × 5 non-uniform diffraction zones for GPSCs with a strong modulation in long period and a strong gradient in unit super-cell, (c) more than 5 × 5 uniform diffraction zones for GPSCs with a medium gradient in unit super-cell and a medium modulation in long period. The GPSCs with a strong modulation appear as moiré photonic crystals. The diffraction zone pattern not only demonstrates a characterization method for the fabricated 3D GPSCs, but also proves their unique optical properties of the coupling of light from zones with 360° azimuthal angles and broad zenith angles.  more » « less
Award ID(s):
2128367
PAR ID:
10347660
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
Photonics
Volume:
9
Issue:
6
ISSN:
2304-6732
Page Range / eLocation ID:
395
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. For the first time, we are able to generate over 1000 diffraction spots from a graded photonic super-crystal with a unit super-cell size of 12a × 12a where a is the lattice constant and hole radii are gradually changed in dual directions. The diffraction pattern from the graded photonic super-crystal reveals unique diffraction properties. The first order diffractions of (±1,0) or (0,±1) disappear. Fractional diffraction orders are observed in the diffraction pattern inside a square with vertices of (1,1), (1,−1), (−1,−1) and (−1,−1). The fractional diffraction can be understood from lattices with a period of a. However, a dual-lattice model is considered in order to explain higher-order diffractions. E-field intensity simulations show a coupling and re-distribution among fractional orders of Bloch waves. There are a total of 12 × 12 spots in E-field intensity in the unit supercell corresponding to 12 × 12 fractional diffraction orders in the diffraction pattern and 12 × 12 fractional orders of momentum in the first Brillouin zone in k-space. 
    more » « less
  2. Abstract Twisted moiré photonic crystal is an optical analog of twisted graphene or twisted transition metal dichalcogenide bilayers. In this paper, we report the fabrication of twisted moiré photonic crystals and randomized moiré photonic crystals and their use in enhanced extraction of light in light-emitting diodes (LEDs). Fractional diffraction orders from randomized moiré photonic crystals are more uniform than those from moiré photonic crystals. Extraction efficiencies of 76.5%, 77.8% and 79.5% into glass substrate are predicted in simulations of LED patterned with twisted moiré photonic crystals, defect-containing photonic crystals and random moiré photonic crystals, respectively, at 584 nm. Extraction efficiencies of optically pumped LEDs with 2D perovskite (BA)2(MA)n−1PbnI3n+1ofn= 3 and (5-(2′-pyridyl)-tetrazolato)(3-CF3−5-(2′-pyridyl)pyrazolato) platinum(II) (PtD) have been measured. 
    more » « less
  3. Recently developed graded photonic super-crystals show an enhanced light absorption and light extraction efficiency if they are integrated with a solar cell and an organic light emitting device, respectively. In this paper, we present the holographic fabrication of a graded photonic super-crystal with a rectangular unit super-cell. The spatial light modulator-based pixel-by-pixel phase engineering of the incident laser beam provides a high resolution phase pattern for interference lithography. This also provides a flexible design for the graded photonic super-crystals with a different ratio of length over the width of the rectangular unit super-cell. The light extraction efficiency is simulated for the organic light emitting device, where the cathode is patterned with the graded photonic super-crystal. The high extraction efficiency is maintained for different exposure thresholds during the interference lithography. The desired polarization effects are observed for certain exposure thresholds. The extraction efficiency reaches as high as 75% in the glass substrate. 
    more » « less
  4. Twisted photonic crystals are photonic analogs of twisted monolayer materials such as graphene and their optical property studies are still in their infancy. This paper reports optical properties of twisted single-layer 2D+ moiré photonic crystals where there is a weak modulation in z direction, and bilayer moiré-overlapping-moiré photonic crystals. In weak-coupling bilayer moiré-overlapping-moiré photonic crystals, the light source is less localized with an increasing twist angle, similar to the results reported by the Harvard research group in References 37 and 38 on twisted bilayer photonic crystals, although there is a gradient pattern in the former case. In a strong-coupling case, however, the light source is tightly localized in AA-stacked region in bilayer PhCs with a large twist angle. For single-layer 2D+ moiré photonic crystals, the light source in Ex polarization can be localized and forms resonance modes when the single-layer 2D+ moiré photonic crystal is integrated on a glass substrate. This study leads to a potential application of 2D+ moiré photonic crystal in future on-chip optoelectronic integration. 
    more » « less
  5. This paper presents a holographic fabrication of a new type of photonic crystal, called graded photonic super-crystals with graded basis, dual period and dual symmetry. Pixel-by-pixel phase coding of laser beams in a spatial light modulator can produce the highest resolution in produced photonic super-lattice. Two-level designs in phase pattern are used to generate graded photonic super-crystals where graded square lattice clusters are orientated in four, five or six-fold symmetry. Further phase engineering in a super-cell of 12x8 pixels can produce small-period square lattice orientated in a large period rectangular pattern. 
    more » « less