This content will become publicly available on January 1, 2025
Twisted photonic crystals are photonic analogs of twisted monolayer materials such as graphene and their optical property studies are still in their infancy. This paper reports optical properties of twisted single-layer 2D+ moiré photonic crystals where there is a weak modulation in z direction, and bilayer moiré-overlapping-moiré photonic crystals. In weak-coupling bilayer moiré-overlapping-moiré photonic crystals, the light source is less localized with an increasing twist angle, similar to the results reported by the Harvard research group in References 37 and 38 on twisted bilayer photonic crystals, although there is a gradient pattern in the former case. In a strong-coupling case, however, the light source is tightly localized in AA-stacked region in bilayer PhCs with a large twist angle. For single-layer 2D+ moiré photonic crystals, the light source in Ex polarization can be localized and forms resonance modes when the single-layer 2D+ moiré photonic crystal is integrated on a glass substrate. This study leads to a potential application of 2D+ moiré photonic crystal in future on-chip optoelectronic integration.
more » « less- Award ID(s):
- 2128367
- PAR ID:
- 10529757
- Publisher / Repository:
- MDPI
- Date Published:
- Journal Name:
- Photonics
- Volume:
- 11
- Issue:
- 1
- ISSN:
- 2304-6732
- Page Range / eLocation ID:
- 13
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
The study of twisted bilayer 2D materials has revealed many interesting physics properties. A twisted moiré photonic crystal is an optical analog of twisted bilayer 2D materials. The optical properties in twisted photonic crystals have not yet been fully elucidated. In this paper, we generate 2D twisted moiré photonic crystals without physical rotation and simulate their photonic band gaps in photonic crystals formed at different twisted angles, different gradient levels, and different dielectric filling factors. At certain gradient levels, interface modes appear within the photonic band gap. The simulation reveals “tic tac toe”-like and “traffic circle”-like modes as well as ring resonance modes. These interesting discoveries in 2D twisted moiré photonic crystal may lead toward its application in integrated photonics.more » « less
-
A moiré photonic crystal is an optical analog of twisted graphene. A 3D moiré photonic crystal is a new nano-/microstructure that is distinguished from bilayer twisted photonic crystals. Holographic fabrication of a 3D moiré photonic crystal is very difficult due to the coexistence of the bright and dark regions, where the exposure threshold is suitable for one region but not for the other. In this paper, we study the holographic fabrication of 3D moiré photonic crystals using an integrated system of a single reflective optical element (ROE) and a spatial light modulator (SLM) where nine beams (four inner beams + four outer beams + central beam) are overlapped. By modifying the phase and amplitude of the interfering beams, the interference patterns of 3D moiré photonic crystals are systemically simulated and compared with the holographic structures to gain a comprehensive understanding of SLM-based holographic fabrication. We report the holographic fabrication of phase and beam intensity ratio-dependent 3D moiré photonic crystals and their structural characterization. Superlattices modulated in the z-direction of 3D moiré photonic crystals have been discovered. This comprehensive study provides guidance for future pixel-by-pixel phase engineering in SLM for complex holographic structures.more » « less
-
Abstract Twisted moiré photonic crystal is an optical analog of twisted graphene or twisted transition metal dichalcogenide bilayers. In this paper, we report the fabrication of twisted moiré photonic crystals and randomized moiré photonic crystals and their use in enhanced extraction of light in light-emitting diodes (LEDs). Fractional diffraction orders from randomized moiré photonic crystals are more uniform than those from moiré photonic crystals. Extraction efficiencies of 76.5%, 77.8% and 79.5% into glass substrate are predicted in simulations of LED patterned with twisted moiré photonic crystals, defect-containing photonic crystals and random moiré photonic crystals, respectively, at 584 nm. Extraction efficiencies of optically pumped LEDs with 2D perovskite (BA)2(MA)
n −1PbnI3n +1ofn = 3 and (5-(2′-pyridyl)-tetrazolato)(3-CF3−5-(2′-pyridyl)pyrazolato) platinum(II) (PtD) have been measured. -
Abstract The twisted stacking of two layered crystals has led to the emerging moiré physics as well as intriguing chiral phenomena such as chiral phonon and photon generation. In this work, we identified and theoretically formulated a non-trivial twist-enabled coupling mechanism in twisted bilayer photonic crystal (TBPC), which connects the bound state in the continuum (BIC) mode to the free space through the twist-enabled channel. Moreover, the radiation from TBPC hosts an optical vortex in the far field with both odd and even topological orders. We quantitatively analyzed the twist-enabled coupling between the BIC mode and other non-local modes in the photonic crystals, giving rise to radiation carrying orbital angular momentum. The optical vortex generation is robust against geometric disturbance, making TBPC a promising platform for well-defined vortex generation. As a result, TBPCs not only provide a new approach to manipulating the angular momentum of photons, but may also enable novel applications in integrated optical information processing and optical tweezers. Our work broadens the field of moiré photonics and paves the way toward the novel application of moiré physics.
-
Twistronics has been studied for manipulating electronic properties through a twist angle in the formed moiré superlattices of two dimensional layer materials. In this paper, we study twistoptics for manipulating optical properties in twisted moiré photonic patterns without physical rotations. We describe a theoretic approach for the formation of single-layer twisted photonic pattern in square and triangular lattices through an interference of two sets of laser beams arranged in two cone geometries. The moiré period and the size of unit super-cell of moiré patterns are related to the twist angle that is calculated from the wavevector ratio of laser beams. The bright and dark regions in moiré photonic pattern in triangular lattices are reversible. We simulate E-field intensities and their cavity quality factors for resonance modes in moiré photonic pattern in square lattices. Due to the bandgap dislocation between the bright and dark regions, the resonance modes with very high quality-factors appears near bandgap edges for the moiré photonic pattern with a twist angle of 9.5 degrees. At the low frequency range, the resonance modes can be explained as Mie resonances. The cavity quality factor decreases for resonance modes when the twist angle is increased to 22.6 degrees.