We present Atacama Large Millimeter/submillimeter Array observations with a 800 au resolution and radiative-transfer modeling of the inner part (
- Award ID(s):
- 2009842
- Publication Date:
- NSF-PAR ID:
- 10347673
- Journal Name:
- Astronomy & Astrophysics
- Volume:
- 655
- Page Range or eLocation-ID:
- A72
- ISSN:
- 0004-6361
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract r ≈ 6000 au) of the ionized accretion flow around a compact star cluster in formation at the center of the luminous ultracompact Hii region G10.6-0.4. We modeled the flow with an ionized Keplerian disk with and without radial motions in its outer part, or with an external Ulrich envelope. The Markov Chain Monte Carlo fits to the data give total stellar massesM ⋆from 120 to 200M ⊙, with much smaller ionized-gas massesM ion-gas= 0.2–0.25M ⊙. The stellar mass is distributed within the gravitational radiusR g ≈ 1000 to 1500 au, where the ionized gas is bound. The viewing inclination angle from the face-on orientation isi = 49°–56°. Radial motions at radiir >R g converge tov r ,0≈ 8.7 km s−1, or about the speed of sound of ionized gas, indicating that this gas is marginally unbound at most. From additional constraints on the ionizing-photon rate and far-IR luminosity of the region, we conclude that the stellar cluster consists of a few massive stars withM star= 32–60M ⊙, or one star in this range of masses accompanied by a population of lower-mass stars. Any active accretion of ionized gas onto the massive (proto)stars is residual. Themore » -
ABSTRACT Young massive clusters (YMCs) are compact (≲1 pc), high-mass (>104 M⊙) stellar systems of significant scientific interest. Due to their rarity and rapid formation, we have very few examples of YMC progenitor gas clouds before star formation has begun. As a result, the initial conditions required for YMC formation are uncertain. We present high resolution (0.13 arcsec, ∼1000 au) ALMA observations and Mopra single-dish data, showing that Galactic Centre dust ridge ‘Cloud d’ (G0.412 + 0.052, mass = 7.6 × 104 M⊙, radius = 3.2 pc) has the potential to become an Arches-like YMC (104 M⊙, r ∼ 1 pc), but is not yet forming stars. This would mean it is the youngest known pre-star-forming massive cluster and therefore could be an ideal laboratory for studying the initial conditions of YMC formation. We find 96 sources in the dust continuum, with masses ≲3 M⊙ and radii of ∼103 au. The source masses and separations are more consistent with thermal rather than turbulent fragmentation. It is not possible to unambiguously determine the dynamical state of most of the sources, as the uncertainty on virial parameter estimates is large. We find evidence for large-scale (∼1 pc) converging gas flows, which could cause the cloud to grow rapidly, gaining 104 M⊙ within 105 yr. The highest density gas is found atmore »
-
Abstract We present 250 GHz continuum and H29α line data toward W 49 N:A2, a hypercompact H ii region ionized by an O9 star. The data obtained with ALMA at a resolution of ∼0${_{.}^{\prime\prime}}$05 (600 au) confirmed the presence of an ionized ring with a radius of ∼700 au inclined by ∼50° (0° for pole-on). It has a width of ∼1000 au and is relatively flat with a scale height of less than several hundred au. The tilted ring, or the apparent ellipse, has a prominent velocity difference between its NW and SE ridges along the minor axis, suggesting that it is expanding in the equatorial plane at a velocity of 13.2 km s−1. The ring also shows a hint of rotation at 2.7 km s−1, which is significantly (2.5 σ) smaller than the Kepler velocity of 5.2 km s−1 at its radius around the 20 M⊙ star. This can be interpreted as that the ring gas has been transported from the radius of ∼170 au by conserving its original specific angular momentum that it had there. The ionized ring may thus be a remnant of the accretion disk that fed the O9 star, the radiation or magnetic activities of which became so strong that the disk accretion was reversed due to the intense thermal or magneto-hydrodynamicmore »
-
null (Ed.)Context. FU Orionis is the archetypal FUor star, a subclass of young stellar objects (YSOs) that undergo rapid brightening events, often gaining between four and six magnitudes on timescales of days. This brightening is often associated with a massive increase in accretion, which is one of the most ubiquitous processes in astrophysics for bodies ranging from planets and stars to super-massive black holes. We present multi-band interferometric observations of the FU Ori circumstellar environment, including the first J -band interferometric observations of a YSO. Aims. We investigate the morphology and temperature gradient of the innermost regions of the accretion disk around FU Orionis. We aim to characterise the heating mechanisms of the disk and comment on potential outburst-triggering processes. Methods. Recent upgrades to the MIRC-X instrument at the CHARA array have allowed for the first dual-band J and H observations of YSOs. Using baselines up to 331 m, we present high-angular-resolution data of a YSO covering the near-infrared bands J , H , and K . The unprecedented spectral range of the data allowed us to apply temperature gradient models to the innermost regions of FU Ori. Results. We spatially resolved the innermost astronomical unit of the disk and determinemore »
-
Context. The relationship between outflow launching and the formation of accretion disks around young stellar objects is still not entirely understood, which is why spectrally and spatially resolved observations are needed. Recently, the Atacama Large Millimetre/sub-millimetre Array (ALMA) carried out long-baseline observations towards a handful of young sources, revealing connections between outflows and the inner regions of disks. Aims. Here we aim to determine the small-scale kinematical and morphological properties of the outflow from the isolated protostar B335 for which no Keplerian disk has, so far, been observed on scales down to 10 au. Methods. We used ALMA in its longest-baseline configuration to observe emission from CO isotopologues, SiO, SO 2 , and CH 3 OH. The proximity of B335 provides a resolution of ~3 au (0.03′′). We also combined our long-baseline data with archival observations to produce a high-fidelity image covering scales up to 700 au (7′′). Results. 12 CO has an X-shaped morphology with arms ~50 au in width that we associate with the walls of an outflow cavity, similar to what is observed on larger scales. Long-baseline continuum emission is confined to <7 au from the protostar, while short-baseline continuum emission follows the 12 CO outflow andmore »