skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: The magnetic field in the dense photodissociation region of DR 21
ABSTRACT Measuring interstellar magnetic fields is extremely important for understanding their role in different evolutionary stages of interstellar clouds and star formation. However, detecting the weak field is observationally challenging. We present measurements of the Zeeman effect in the 1665 and 1667 MHz (18 cm) lines of the hydroxyl radical (OH) lines towards the dense photodissociation region (PDR) associated with the compact H ii region DR 21 (Main). From the OH 18 cm absorption, observed with the Karl G. Jansky Very Large Array, we find that the line-of-sight magnetic field in this region is ∼0.13 mG. The same transitions in maser emission towards the neighbouring DR 21(OH) and W 75S-FR1 regions also exhibit the Zeeman splitting. Along with the OH data, we use [C ii] 158 μm line and hydrogen radio recombination line data to constrain the physical conditions and the kinematics of the region. We find the OH column density to be ∼3.6 × 1016(Tex/25 K) cm−2, and that the 1665 and 1667 MHz absorption lines are originating from the gas where OH and C+ are co-existing in the PDR. Under reasonable assumptions, we find the measured magnetic field strength for the PDR to be lower than the value expected from the commonly discussed density–magnetic field relation while the field strength values estimated from the maser emission are roughly consistent with the same. Finally, we compare the magnetic field energy density with the overall energetics of DR 21’s PDR and find that, in its current evolutionary stage, the magnetic field is not dynamically important.  more » « less
Award ID(s):
2009842
PAR ID:
10347681
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
Monthly Notices of the Royal Astronomical Society
Volume:
501
Issue:
4
ISSN:
0035-8711
Page Range / eLocation ID:
4825 to 4836
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    We present the serendipitous detection of the two main OH maser lines at 1667 and 1665 MHz associated with IRAS 10597+5926 at z ⊙  = 0.19612 in the untargeted Apertif Wide-area Extragalactic imaging Survey (AWES), and the subsequent measurement of the OH 1612 MHz satellite line in the same source. With a total OH luminosity of log( L / L ⊙ ) = 3.90 ± 0.03, IRAS 10597+5926 is the fourth brightest OH megamaser (OHM) known. We measure a lower limit for the 1667/1612 ratio of R 1612  > 45.9, which is the highest limiting ratio measured for the 1612 MHz OH satellite line to date. OH satellite line measurements provide a potentially valuable constraint by which to compare detailed models of OH maser pumping mechanisms. Optical imaging shows that the galaxy is likely a late-stage merger. Based on published infrared and far ultraviolet fluxes, we find that the galaxy is an ultra-luminous infrared galaxy (ULIRG) with log( L TIR / L ⊙ ) = 12.24 that is undergoing a starburst with an estimated star formation rate of 179 ± 40 M ⊙ yr −1 . These host galaxy properties are consistent with the physical conditions responsible for very bright OHM emission. Finally, we provide an update on the predicted number of OH masers that may be found in AWES and estimate the total number of OH masers that will be detected in each of the individual main and satellite OH 18 cm lines. 
    more » « less
  2. Abstract The most abundant interstellar molecule, molecular hydrogen (H2), is practically invisible in cold molecular clouds. Astronomers typically use carbon monoxide (CO) to trace the bulk distribution and mass of H2in our galaxy and many others. CO observations alone fail to trace a significant component of molecular gas known as “CO-dark” molecular gas, which can be probed with molecules such as OH and CH. We present an extremely sensitive pilot search for the 18 cm hydroxyl (OH) lines in the Andromeda galaxy (M31) with the 100 m Robert C. Byrd Green Bank Telescope. We successfully detected the 1665 and 1667 MHz OH lines in faint emission. The 1665/1667 MHz line ratio displays the characteristic 5:9 ratio predicted under conditions of local thermodynamic equilibrium. To our knowledge, this is the first detection of nonmaser 18 cm OH emission in another galaxy. We compare our OH and Hiobservations with archival CO (1–0) observations. Our OH detection position overlaps with the previously discovered Arp Outer Arm in CO. Our best estimates show that the amount of H2traced by OH is 100%–140% higher than the amount traced by CO in this sight line. The amount of dark molecular gas implied by dust data supports this conclusion. We conclude that the 18 cm OH lines hold promise as a valuable tool for mapping of the “CO-dark” and “CO-faint” molecular gas phase in nearby galaxies, especially with upcoming multibeam, phased-array feed receivers on radio telescopes, which will allow for drastically improved mapping speeds of faint signals. 
    more » « less
  3. ABSTRACT We present the discovery of the most distant OH megamaser (OHM) to be observed in the main lines, using data from the MeerKAT International Giga-Hertz Tiered Extragalactic Exploration (MIGHTEE) survey. At a newly measured redshift of z = 0.7092, the system has strong emission in both the 1665 MHz (L ≈ 2500 L⊙) and 1667 MHz (L ≈ 4.5 × 104 L⊙) transitions, with both narrow and broad components. We interpret the broad line as a high-velocity-dispersion component of the 1667 MHz transition, with velocity v ∼ 330 km s−1 with respect to the systemic velocity. The host galaxy has a stellar mass of M⋆ = 2.95 × 1010 M⊙ and a star formation rate of SFR = 371 M⊙ yr−1, placing it ∼1.5 dex above the main sequence for star-forming galaxies at this redshift, and can be classified as an ultraluminous infrared galaxy. Alongside the optical imaging data, which exhibit evidence for a tidal tail, this suggests that the OHM arises from a system that is currently undergoing a merger, which is stimulating star formation and providing the necessary conditions for pumping the OH molecule to saturation. The OHM is likely to be lensed, with a magnification factor of ∼2.5, and perhaps more if the maser emitting region is compact and suitably offset relative to the centroid of its host galaxy’s optical light. This discovery demonstrates that spectral line mapping with the new generation of radio interferometers may provide important information on the cosmic merger history of galaxies. 
    more » « less
  4. Abstract Magnetic fields have an important role in the evolution of interstellar medium and star formation 1,2 . As the only direct probe of interstellar field strength, credible Zeeman measurements remain sparse owing to the lack of suitable Zeeman probes, particularly for cold, molecular gas 3 . Here we report the detection of a magnetic field of +3.8 ± 0.3 microgauss through the H  I narrow self-absorption (HINSA) 4,5 towards L1544 6,7 —a well-studied prototypical prestellar core in an early transition between starless and protostellar phases 8–10 characterized by a high central number density 11 and a low central temperature 12 . A combined analysis of the Zeeman measurements of quasar H  I absorption, H  I emission, OH emission and HINSA reveals a coherent magnetic field from the atomic cold neutral medium (CNM) to the molecular envelope. The molecular envelope traced by the HINSA is found to be magnetically supercritical, with a field strength comparable to that of the surrounding diffuse, magnetically subcritical CNM despite a large increase in density. The reduction of the magnetic flux relative to the mass, which is necessary for star formation, thus seems to have already happened during the transition from the diffuse CNM to the molecular gas traced by the HINSA. This is earlier than envisioned in the classical picture where magnetically supercritical cores capable of collapsing into stars form out of magnetically subcritical envelopes 13,14 . 
    more » « less
  5. Abstract G34.26 + 0.15 is a region of high-mass star formation that contains a broad range of young stellar objects in different stages of evolution, including a hot molecular core, hypercompact Hiiregions, and a prototypical cometary ultracompact Hiiregion. Previous high-sensitivity single-dish observations by our group resulted in the detection of broad 6035 MHz OH absorption in this region; the line showed a significant blueshifted asymmetry indicative of molecular gas expansion. We present high-sensitivity Karl G. Jansky Very Large Array (VLA) observations of the 6035 MHz OH line conducted to image the absorption and investigate its origin with respect to the different star formation sites in the region. In addition, we report detection of 6030 MHz OH absorption with the VLA and further observations of 4.7 GHz and 6.0 GHz OH lines obtained with the Arecibo Telescope. The 6030 MHz OH line shows a very similar absorption profile as the 6035 MHz OH line. We found that the 6035 MHz OH line absorption region is spatially unresolved at ∼2″ scales, and it is coincident with one of the bright ionized cores of the cometary Hiiregion that shows broad radio recombination line emission. We discuss a scenario where the OH absorption is tracing the remnants of a pole-on molecular outflow that is being ionized inside-out by the ultracompact Hiiregion. 
    more » « less