skip to main content


Title: Goals for the Undergraduate Instructional Inorganic Chemistry Laboratory When Course-Based Undergraduate Research Experiences Are Implemented: A National Survey
Course-based undergraduate research experiences (CUREs) are a promising approach for incorporating inquiry-based instruction into the under- graduate chemistry laboratory curriculum. This study used data from a national survey of inorganic chemistry faculty members (n = 142) to investigate CURE implementation in the inorganic chemistry instructional laboratory. Results indicate that faculty members who implement CUREs place greater emphasis on a distinct set of instructional goals when compared to faculty members who do not implement CUREs. CURE implementation was further associated with a range of instructional and departmental characteristics, including group-only student work, independent course development by faculty instructors, limited graduate TA support, and ACS certification of degree programs. Findings from this investigation point toward (1) a need for increased efforts focused on supporting CURE implementation, (2) productive avenues through which curriculum designers and communities of practice can provide this support, and (3) needed areas of research that will further inform these efforts.  more » « less
Award ID(s):
1726133
PAR ID:
10347704
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Journal of Chemical Education
ISSN:
0021-9584
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Provost, Joseph ; Cornely, Kathleen ; Parente, Amy ; Peterson, Celeste ; Springer, Amy (Ed.)
    Abstract

    College science programs exhibit high rates of student attrition, especially among Students of Color, women, members of the LGBTQ+ community, and those with disabilities. Many of the reasons students choose to leave or feel pushed out of science can be mitigated through participation in faculty-mentored research. However, faculty resources are limited, and not every student has access to faculty mentoring due to systemic or structural barriers. By bringing authentic scientific research into the classroom context, course-based undergraduate research experiences (CUREs) expand the number of students who participate in research and provide benefits similar to faculty-mentored research. Instructors also benefit from teaching CUREs. Using a systematic review of 14 manuscripts concerning the Malate Dehydrogenase CUREs Community (MCC) and malate dehydrogenase (MDH) CUREs, we demonstrate that CUREs can be implemented flexibly, are authentic research experiences, generate new scientific discoveries, and improve student outcomes. Additionally, CURE communities offer substantial advantages to faculty wishing to implement CUREs.

     
    more » « less
  2. Abstract

    The drive to broaden equitable access to undergraduate research experiences has catalyzed the development and implementation of course‐based undergraduate research experiences (CUREs). Biology education has prioritized embedding CUREs in introductory labs, which are frequently taught by graduate teaching assistants (GTAs). Thus, a CURE GTA is expected not only to teach but also to support novice student researchers. We know little about how GTAs perform as research mentors in a CURE, or how the quality of their mentorship and support impacts undergraduate students. To address this gap in knowledge, we conducted a phenomenological study of an introductory biology CURE, interviewing 25 undergraduate students taught by nine different GTAs at a single institution. We used self‐determination theory to guide our exploration of how students' autonomous motivation to engage in a CURE is impacted by perceptions of GTA support. We found that highly motivated students were more likely to experience factors hypothesized to optimize motivation in the CURE, and to perceive that their GTA was highly supportive of these elements. Students with lower motivation were less likely to report engaging in fundamental elements of research offered in a CURE. Our findings suggest that GTAs directly impact students' motivation, which can, in turn, influence whether students perceive receiving the full research experience as intended in a CURE. We contend that practitioners who coordinate CUREs led by GTAs should therefore offer curated training that emphasizes supporting students' autonomous motivation in the course and engagement in the research. Our work suggests that GTAs may differ in their capacity to provide students with the support they need to receive and benefit from certain pedagogical practices. Future work assessing innovative approaches in undergraduate biology laboratory courses should continue to investigate potenital differential outcomes for students taught by GTAs.

     
    more » « less
  3. Course-Based Undergraduate Research Experiences or CUREs promote student-centered learning through infusion of research principles within an undergraduate course. This is an ideal pedagogy for use in General Chemistry. CUREs provide access to research experience to a broader audience, which increases engagement and success. A CURE model was implemented in a second semester General Chemistry course at Pasadena City College, a Hispanic serving institution (HSI) community college. Student success rate in the CURE chemistry classroom increased by over 20% and students’ completion rates increased over 5%. In addition, success, and completion rates of Hispanic students in the class showed no achievement gap and an over 10% higher completion rate compared to students that took the non-CURE chemistry course. CUREs also had the added benefit of providing more populous groups of undergraduates with opportunities to get a taste of real-world working scenarios that would normally be reserved for upper-level graduate students. Adopting CUREs as an integral part of an institutions’ learning strategies promotes student engagement that will bridge the gaps in traditional learning, but also facilitate development of the essential soft skills required in the collaborative environment that is commonplace in working professional settings. The potential role and relationship of CUREs implementation regarding the revival and cultivation of polymathy among future students as well as its implications on the future of academic instruction based on connections made from historical and interdisciplinary observations are also explores. 
    more » « less
  4. Rumain, Barbara T. (Ed.)
    Course-based undergraduate research experiences (CUREs) are laboratory courses that integrate broadly relevant problems, discovery, use of the scientific process, collaboration, and iteration to provide more students with research experiences than is possible in individually mentored faculty laboratories. Members of the national Malate dehydrogenase CUREs Community (MCC) investigated the differences in student impacts between traditional laboratory courses (control), a short module CURE within traditional laboratory courses (mCURE), and CUREs lasting the entire course (cCURE). The sample included approximately 1,500 students taught by 22 faculty at 19 institutions. We investigated course structures for elements of a CURE and student outcomes including student knowledge, student learning, student attitudes, interest in future research, overall experience, future GPA, and retention in STEM. We also disaggregated the data to investigate whether underrepresented minority (URM) outcomes were different from White and Asian students. We found that the less time students spent in the CURE the less the course was reported to contain experiences indicative of a CURE. The cCURE imparted the largest impacts for experimental design, career interests, and plans to conduct future research, while the remaining outcomes were similar between the three conditions. The mCURE student outcomes were similar to control courses for most outcomes measured in this study. However, for experimental design, the mCURE was not significantly different than either the control or cCURE. Comparing URM and White/Asian student outcomes indicated no difference for condition, except for interest in future research. Notably, the URM students in the mCURE condition had significantly higher interest in conducting research in the future than White/Asian students. 
    more » « less
  5. An enormous reserve of information about the subglacial bedrock, tectonic and topographic evolution of Marie Byrd Land (MBL) exists within glaciomarine sediments of the Amundsen Sea shelf, slope and deep sea, and MBL marine shelf. Investigators of the NSF ICI-Hot and NSF Linchpin projects partnered with Arizona Laserchron Center to provide course-based undergraduate research experiences (CUREs) for from groups who do not ordinarily find access points to Antarctic science. Our courses enlist BIPOC and gender-expansive undergraduates in studies of ice-rafted debris (IRD) and bedrock samples, in order to impart skills, train in the use of research instrumentation, help students to develop confidence in their scientific abilities, and collaboratively address WAIS research questions at an early academic stage. CUREs afford benefits to graduate researchers and postdoctoral scientists, also, who join in as instructional faculty: CUREs allow GRs and PDs to engage in teaching that closely ties to their active research, yet provides practical experience to strengthen the academic portfolio (Cascella & Jez, 2018). Team members also develop art-science initiatives that engage students and community members who may not ordinarily engage with science, forging connections that make science relatable. Re-casting science topics through art centers personal connections and humanizes science, to promote understanding that goes beyond the purely analytical. Academic research shows that diverse undergraduates gain markedly from the convergence of art and science, and from involvement in collaborative research conducted within a CURE cohort, rather than as an individualized experience (e.g. Shanahan et al. 2022). The CUREs are offered as regular courses for credit, making access equitable via course enrollment. The course designation carries a legitimacy that is sought by students who balance academics with part-time employment. Course information is disseminated via STEM Bridge programs and/or an academic advising hub that reaches students from groups that are insufficiently represented within STEM and cryosphere science. CURE investigation of Amundsen Sea and WAIS problems is worthy objective because: 1) A variety of sample preparation, geochemical methods, and scientific best-practices can be imparted, while educating students about Antarctica’s geological configuration and role in the Earth climate system. 2) Individual projects that are narrowly defined can readily scaffold into collaborative science at the time of data synthesis and interpretation. 3) There is a high likelihood of scientific discovery that contributes to grant objectives. 4) Enrolled students will experience ambiguity and instrumentation setbacks alongside their faculty and instructors, and will likely have an opportunity to withstand/overcome challenges in a manner that trains students in complex problem solving and imparts resilience (St John et al., 2019). Based on our experiences, we consider CUREs as a means to create more inclusive and equitable spaces for learning to do research, and a basis for a broadening future WAIS community. Our groups have yet to assess student learning gains and STEM entry in a robust way, but we can report that two presenters at WAIS 2022 came from our 2021 CURE, and four polar science graduate researchers gained experience via CURE teaching. Data obtained by CURE students is contributing to our NSF projects’ aims to obtain isotope, age, and petrogenetic criteria with bearing on the subglacial bedrock geology, tectonic and landscape evolution, and ice sheet history of MBL. Cited and recommended works: Cascella & Jez, 2018, doi: 10.1021/acs.jchemed.7b00705 Gentile et al., 2017, doi: 10.17226/24622 Shanahan et al. 2022, https://www.cur.org/assets/1/23/01-01_TOC_SPUR_Winter21.pdf Shortlidge & Brownell, 2016, doi: 10.1128/jmbe.v17i3.1103 St. John et al. 2019, EOS, doi: 10.1029/2019EO127285. 
    more » « less