skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Friday, September 29 until 11:59 PM ET on Saturday, September 30 due to maintenance. We apologize for the inconvenience.


Title: Enlisting historically excluded undergraduates in the effort to extend knowledge of West Antarctica’s bedrock, through course-based undergraduate research experiences (cures) and Art-Science initiatives
An enormous reserve of information about the subglacial bedrock, tectonic and topographic evolution of Marie Byrd Land (MBL) exists within glaciomarine sediments of the Amundsen Sea shelf, slope and deep sea, and MBL marine shelf. Investigators of the NSF ICI-Hot and NSF Linchpin projects partnered with Arizona Laserchron Center to provide course-based undergraduate research experiences (CUREs) for from groups who do not ordinarily find access points to Antarctic science. Our courses enlist BIPOC and gender-expansive undergraduates in studies of ice-rafted debris (IRD) and bedrock samples, in order to impart skills, train in the use of research instrumentation, help students to develop confidence in their scientific abilities, and collaboratively address WAIS research questions at an early academic stage. CUREs afford benefits to graduate researchers and postdoctoral scientists, also, who join in as instructional faculty: CUREs allow GRs and PDs to engage in teaching that closely ties to their active research, yet provides practical experience to strengthen the academic portfolio (Cascella & Jez, 2018). Team members also develop art-science initiatives that engage students and community members who may not ordinarily engage with science, forging connections that make science relatable. Re-casting science topics through art centers personal connections and humanizes science, to promote understanding that goes beyond the purely analytical. Academic research shows that diverse undergraduates gain markedly from the convergence of art and science, and from involvement in collaborative research conducted within a CURE cohort, rather than as an individualized experience (e.g. Shanahan et al. 2022). The CUREs are offered as regular courses for credit, making access equitable via course enrollment. The course designation carries a legitimacy that is sought by students who balance academics with part-time employment. Course information is disseminated via STEM Bridge programs and/or an academic advising hub that reaches students from groups that are insufficiently represented within STEM and cryosphere science. CURE investigation of Amundsen Sea and WAIS problems is worthy objective because: 1) A variety of sample preparation, geochemical methods, and scientific best-practices can be imparted, while educating students about Antarctica’s geological configuration and role in the Earth climate system. 2) Individual projects that are narrowly defined can readily scaffold into collaborative science at the time of data synthesis and interpretation. 3) There is a high likelihood of scientific discovery that contributes to grant objectives. 4) Enrolled students will experience ambiguity and instrumentation setbacks alongside their faculty and instructors, and will likely have an opportunity to withstand/overcome challenges in a manner that trains students in complex problem solving and imparts resilience (St John et al., 2019). Based on our experiences, we consider CUREs as a means to create more inclusive and equitable spaces for learning to do research, and a basis for a broadening future WAIS community. Our groups have yet to assess student learning gains and STEM entry in a robust way, but we can report that two presenters at WAIS 2022 came from our 2021 CURE, and four polar science graduate researchers gained experience via CURE teaching. Data obtained by CURE students is contributing to our NSF projects’ aims to obtain isotope, age, and petrogenetic criteria with bearing on the subglacial bedrock geology, tectonic and landscape evolution, and ice sheet history of MBL. Cited and recommended works: Cascella & Jez, 2018, doi: 10.1021/acs.jchemed.7b00705 Gentile et al., 2017, doi: 10.17226/24622 Shanahan et al. 2022, https://www.cur.org/assets/1/23/01-01_TOC_SPUR_Winter21.pdf Shortlidge & Brownell, 2016, doi: 10.1128/jmbe.v17i3.1103 St. John et al. 2019, EOS, doi: 10.1029/2019EO127285.  more » « less
Award ID(s):
1917176 1939146
NSF-PAR ID:
10376640
Author(s) / Creator(s):
; ; ; ; ; ;
Date Published:
Journal Name:
29th West Antarctic Ice Sheet workshop
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Marine sediments, obtained from cores and captures from deep sea and continental shelf sites of West Antarctica, contain rich records of latest Miocene to Present glacial and deglacial processes and conditions at the margin of the West Antarctic ice sheet (WAIS). The materials we are investigating were recovered from a) Resolution Drift on the Amundsen Sea continental rise (water depths >3900m), b)the continental shelf in the Amundsen Sea, Wrigley Gulf, and Sultzberger Bay (water depths <1000m). Resolution Drift cores were drilled by IODP Expedition 379 (Gohl et al., doi:10.14379/iodp.proc.379.2021) in sediments dominated by compacted clay and silty clay, with conglomeratic intervals of ice-rafted detritus (IRD) and downslope deposits. The shelf sediments were recovered by piston core, trigger core, and Smith McIntyre Grab (SMG) during USA research cruises of the RVIB Nathaniel B Palmer (1999, 2000, 2007) and USCGC Glacier (1983). The shelf samples are non-compacted clay, containing abundant cobbles, pebbles and biogenic fragments. Our research focuses upon rock clasts, detrital apatite and zircon, felsic volcanic tephra, and micro-manganese nodules separated from marine and glaciomarine clay. The rock clasts and detrital minerals represent samples of continental crust that we characterise according to rock type, petrology, geochemistry, and geo-thermochronology [U-Pb, (U-Th)/He, and fission track methods]. These characteristics illuminate solid Earth processes, including the development of subglacial topography . We compared clasts’ petrology and age data to the exposed onshore geology and thermochronology of bedrock, and determined that ≥90% of clasts likely originated in West Antarctica. Therefore the materials can be used to assign roughness, erodibility, and heat production factors for subglacial bedrock, which constitute boundary conditions used by ice sheet modelers. Rhyolite ash and fragments provide new evidence for explosive eruptions (dated ca. 2.55 to 2.92 Ma; feldspar 40Ar/39Ar) delivered to sea as airfall, IRD, and possible subglacial water transport. Silicic eruptions produce ash and aerosols that may screen solar energy, and provide bio-available nutrients that produce phytoplankton blooms leading to sequestration of carbon. The rhyolite dates coincide with the end of a Pliocene warm period recorded in IODP379 cores (Gille-Petzoldt et al., 10.3389/feart.2022.976703). Our work in progress seeks to obtain higher resolution geochronology in order to determine whether silicic continental volcanism occurred in response to ice unloading due to deglaciation (cf. Lin et al., 10.5194/cp-18-485-2022) and whether erupted products contributed to latest Pliocene significant cooling and WAIS re-glaciation. Another distinctive sediment constituent is micro-manganese nodules of unusual form. Whereas typical micro-MN nodules are dark, formed of concentric layers, this form is pale in color, ‘barbell’ shaped, and transparent in transmitted light. Scanning electron microscopy shows these to be microcrystalline Mn-oxide with embedded grains of quartz and feldspar, which likely served as seed material. Mn-oxides form by authigenesis at/near the seafloor surface, requiring high oxygen concentrations in the bottom water and low sedimentation rates, generally associated with the end of glacials/during interglacials (Hillenbrand et al. 2021, 10.1029/2021GL093103). Work is in progress to determine whether Mn oxides formed through passive accretion upon seed grains or microbially-mediated precipitation from Mn-oxyhydroxides or colloids, of possible relevance for coastal carbon budgets. https://doi.org/10.5194/egusphere-egu23-9728 
    more » « less
  2. Marshall, Pamela Ann (Ed.)
    ABSTRACT The initial phase of the COVID-19 pandemic changed the nature of course delivery from largely in-person to exclusively remote, thus disrupting the well-established pedagogy of the Genomics Education Partnership (GEP; https://www.thegep.org ). However, our web-based research adapted well to the remote learning environment. As usual, students who engaged in the GEP’s Course-based Undergraduate Research Experience (CURE) received digital projects based on genetic information within assembled Drosophila genomes. Adaptations for remote implementation included moving new member faculty training and peer Teaching Assistant office hours from in-person to online. Surprisingly, our faculty membership significantly increased and, hence, the number of supported students. Furthermore, despite the mostly virtual instruction of the 2020–2021 academic year, there was no significant decline in student learning nor attitudes. Based on successfully expanding the GEP CURE within a virtual learning environment, we provide four strategic lessons we infer toward democratizing science education. First, it appears that increasing access to scientific research and professional development opportunities by supporting virtual, cost-free attendance at national conferences attracts more faculty members to educational initiatives. Second, we observed that transitioning new member training to an online platform removed geographical barriers, reducing time and travel demands, and increased access for diverse faculty to join. Third, developing a Virtual Teaching Assistant program increased the availability of peer support, thereby improving the opportunities for student success. Finally, increasing access to web-based technology is critical for providing equitable opportunities for marginalized students to fully participate in research courses. Online CUREs have great potential for democratizing science education. 
    more » « less
  3. The STEM Excellence through Engagement in Collaboration, Research, and Scholarship (SEECRS) project at Whatcom Community College is a five-year program aiming to support academically talented students with demonstrated financial need in biology, chemistry, geology, computer science, engineering, and physics. This project is funded by an NSF S-STEM (Scholarships in Science, Technology, Engineering, and Mathematics) grant awarded in January 2017. Through an inclusive and long-range effort, the college identified a strong need for financial and comprehensive supports for STEM students. This project will offer financial, academic, and professional support to three two-year cohorts of students. The SEECRS project aims to utilize a STEM-specific guided pathways approach to strengthen recruitment, retention, and matriculation of STEM students at the community college level. Scholarship recipients will be supported through participation in the SEECRS Scholars Academy, a multi-pronged approach to student support combining elements of community building, faculty mentorship, targeted advising activities, authentic science practice, and social activities. Students are introduced to disciplines of interest through opportunities to engage in course-based undergraduate research experiences (CUREs) in Biology, Chemistry and Engineering courses, funded summer research opportunities, and seminars presented by STEM professionals. Communities of practice will be nurtured through the introduction of cohort building and faculty mentorship. Cohort development starts with a required two-credit course for all scholars that emphasizes STEM identity development, specifically focusing on identifying and coping with the ways non-dominant individuals (racial/ethnic minorities, non-male gender, lower socioeconomic status, first-generation, 2-year community college vs. 4-year institutions) are made to feel as outsiders in STEM. Each SEECRS scholar is paired with a faculty mentor who engages in ongoing mentor training. The project evaluation will determine the efficacy of the project activities in achieving their intended outcomes. Specifically, we will collect data to answer the research question: To what extent can a guided pathways approach provide a coordinated and supported STEM experience at Whatcom Community College that: (1) increases student success, and (2) positively shifts students’ STEM self-identity? The evaluation will employ a quasi-experimental research design, specifically a pretest-posttest design with a matched comparison group. Our first cohort of 14 students was selected over two application rounds (winter and summer 2017). We awarded ten full scholarships and four half-scholarships based on financial need data. Cohort demographics of note compared to institutional percentages are: females (64% vs. 57%), Hispanic (14% vs. 17%), African American (7% vs. 2%), white (79% vs. 66%), first generation college bound (43% vs. 37%). The cohort is comprised of six students interested in engineering, six in biology, and one each in geology and environmental sciences. With increased communication between the project team, our Financial Aid office, Entry and Advising, high school outreach, and the Title III grant-funded Achieve, Inspire, Motivate (AIM) Program, as well as a longer advertising time, we anticipate significantly enhancing our applicant pool for the next cohort. The results and lessons learned from our first year of implementation will be presented. 
    more » « less
  4. null (Ed.)
    Course-based undergraduate research experiences (CUREs) are well-documented as high-impact practices that can broaden participation and success in STEM. Drawing primarily from a community-of-practice theoretical framework, we previously developed an interdisciplinary CURE course (Science Bootcamp) for STEM majors focused entirely on the scientific process. Among first-year students, Science Bootcamp leads to psychosocial gains and increased retention. In the current study, we test whether an online Science Bootcamp also improves outcomes for STEM transfer students—a group that faces “transfer shock,” which can negatively impact GPA, psychosocial outcomes, and retention. To this end, we redesigned Science Bootcamp to a two-week course for STEM transfer students to complete prior to beginning the fall semester at our four-year institution. Due to the COVID-19 pandemic, the course was conducted in an entirely virtual format, using primarily synchronous instruction. Despite the course being virtual, the diverse group of STEM majors worked in small groups to conduct rigorous, novel empirical research projects from start to finish, even presenting their results in a poster symposium. Assessment data confirm the compressed, online Science Bootcamp contains key CURE components—opportunities for collaboration, discovery/relevance, and iteration—and that students were highly satisfied with the course. Moreover, in line with our hypothesis, STEM transfer students who participated in the online Science Bootcamp experienced a range of psychosocial gains (e.g., belonging to STEM). In sum, these findings suggest our online Science Bootcamp promotes positive STEM outcomes, representing a highly flexible and affordable CURE that can be scaled for use at institutions of any size. 
    more » « less
  5. IODP Expedition 379 to the Amundsen Sea continental rise recovered latest Miocene-Holocene sediments from two sites on a drift in water depths >3900m. Sediments are dominated by clay and silty clay with coarser-grained intervals and ice-rafted detritus (IRD) (Gohl et al. 2021, doi:10.14379/iodp.proc.379.2021). Cobble-sized dropstones appear as fall-in, in cores recovered from sediments >5.3 Ma. We consider that abundant IRD and the sparse dropstones melted out of icebergs formed due to Antarctic ice-sheet calving events. We are using petrological and age characteristics of the clasts from the Exp379 sites to fingerprint their bedrock provenance. The results may aid in reconstruction of past changes in icesheet extent and extend knowledge of subglacial bedrock. Mapped onshore geology shows pronounced distinctions in bedrock age between tectonic provinces of West or East Antarctica (e.g. Cox et al. 2020, doi:10.21420/7SH7-6K05; Jordan et al. 2020, doi.org/10.1038/s43017-019-0013-6). This allows us to use geochronology and thermochronology of rock clasts and minerals for tracing their provenance, and ascertain whether IRD deposited at IODP379 drillsites originated from proximal or distal Antarctic sources. We here report zircon and apatite U-Pb dates from four sand samples and five dropstones taken from latest Miocene, early Pliocene, and Plio-Pleistocene-boundary sediments. Additional Hf isotope data, and apatite fission track and 40Ar/39Ar Kfeldspar ages for some of the same samples help to strengthen provenance interpretations. The study revealed three distinct zircon age populations at ca. 100, 175, and 250 Ma. Using Kolmogorov-Smirnov (K-S) statistical tests to compare our new igneous and detrital zircon (DZ) U-Pb results with previously published data, we found strong similarities to West Antarctic bedrock, but low correspondence to prospective sources in East Antarctica, implying a role for icebergs calved from the West Antarctic Ice Sheet (WAIS). The ~100 Ma age resembles plutonic ages from Marie Byrd Land and islands in Pine Island Bay. The ~250 and 175 Ma populations match published mineral dates from shelf sediments in the eastern Amundsen Sea Embayment as well as granite ages from the Antarctic Peninsula and the Ellsworth-Whitmore Mountains (EWM). The different derivation of coarse sediment sources requires changes in iceberg origin through the latest Miocene, early Pliocene, and Plio/Pleistocene, likely the result of changes in WAIS extent. One unique dropstone recovered from Exp379 Site U1533B is green quartz arenite, which yielded mostly 500-625 Ma detrital zircons. In visual appearance and dominant U-Pb age population, it resembles a sandstone dropstone recovered from Exp382 Site U1536 in the Scotia Sea (Hemming et al. 2020, https://gsa.confex.com/gsa/2020AM/meetingapp.cgi/Paper/357276). K-S tests yield high values (P ≥ 0.6), suggesting a common provenance for both dropstones recovered from late Miocene to Pliocene sediments, despite the 3270 km distance separating the sites. Comparisons to published data, in progress, narrow the group of potential on-land sources to exposures in the EWM or isolated ranges at far south latitudes in the Antarctic interior. If both dropstones originated from the same source area, they could signify dramatic shifts in the WAIS grounding line position, and the possibility of the periodic opening of a seaway connecting the Amundsen and Weddell Seas. https://meetingorganizer.copernicus.org/EGU21/EGU21-9151.html 
    more » « less