skip to main content


Title: What Is “Socioeconomic Position (SEP),” and How Might It Modify Air Pollution-Health Associations? Cohering Findings, Identifying Challenges, and Disentangling Effects of SEP and Race in US City Settings
Abstract Purpose of Review Environmental epidemiology has long considered socioeconomic position (SEP) to be an important confounder of pollution effects on health, given that, in the USA, lower-income and minority communities are often disproportionately exposed to pollution. In recent decades, a growing literature has revealed that lower-SEP communities may also be more susceptible to pollution. Given the vast number of material and psychosocial stressors that vary by SEP, however, it is unclear which specific aspects of SEP may underlie this susceptibility. As environmental epidemiology engages more rigorously with issues of differential susceptibility, it is pertinent to define SEP more clearly, to disentangle its many aspects, and to move towards identifying causal components. Myriad stressors and exposures vary with SEP, with effects accumulating and interacting over the lifecourse. Here, we ask: In the context of environmental epidemiology, how do we meaningfully characterize”SEP”? Recent Findings In answering this question, it is critical to acknowledge that SEP, stressors, and pollution are differentially distributed by race in US cities. These distributions have been shaped by neighborhood sorting and race-based residential segregation rooted in historical policies and processes (e.g., redlining), which have served to concentrate wealth and opportunities for education and employment in predominantly-white communities. As a result, it is now profoundly challenging to separate SEP from race in the urban US setting. Summary Here, we cohere evidence from our recent and on-going studies aimed at disentangling synergistic health effects among SEP-related stressors and pollutants. We consider an array of SEP-linked social stressors, and discuss persistent challenges in this epidemiology, many of which are related to spatial confounding among multiple pollutants and stressors. Combining quantitative results with insights from qualitative data on neighborhood perceptions and stress (including violence and police-community relations), we offer a lens towards unpacking the complex interplay among SEP, community stressors, race, and pollution in US cities.  more » « less
Award ID(s):
1828910
NSF-PAR ID:
10347835
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Current Environmental Health Reports
Volume:
9
Issue:
3
ISSN:
2196-5412
Page Range / eLocation ID:
355 to 365
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract. Advances in ambient environmental monitoring technologies are enabling concerned communities and citizens to collect data to better understand their local environment and potential exposures. These mobile, low-cost tools make it possible to collect data with increased temporal and spatial resolution, providing data on a large scale with unprecedented levels of detail. This type of data has the potential to empower people to make personal decisions about their exposure and support the development of local strategies for reducing pollution and improving health outcomes. However, calibration of these low-cost instruments has been a challenge. Often, a sensor package is calibrated via field calibration. This involves colocating the sensor package with a high-quality reference instrument for an extended period and then applying machine learning or other model fitting technique such as multiple linear regression to develop a calibration model for converting raw sensor signals to pollutant concentrations. Although this method helps to correct for the effects of ambient conditions (e.g., temperature) and cross sensitivities with nontarget pollutants, there is a growing body of evidence that calibration models can overfit to a given location or set of environmental conditions on account of the incidental correlation between pollutant levels and environmental conditions, including diurnal cycles. As a result, a sensor package trained at a field site may provide less reliable data when moved, or transferred, to a different location. This is a potential concern for applications seeking to perform monitoring away from regulatory monitoring sites, such as personal mobile monitoring or high-resolution monitoring of a neighborhood. We performed experiments confirming that transferability is indeed a problem and show that it can be improved by collecting data from multiple regulatory sites and building a calibration model that leverages data from a more diverse data set. We deployed three sensor packages to each of three sites with reference monitors (nine packages total) and then rotated the sensor packages through the sites over time. Two sites were in San Diego, CA, with a third outside of Bakersfield, CA, offering varying environmental conditions, general air quality composition, and pollutant concentrations. When compared to prior single-site calibration, the multisite approach exhibits better model transferability for a range of modeling approaches. Our experiments also reveal that random forest is especially prone to overfitting and confirm prior results that transfer is a significant source of both bias and standard error. Linear regression, on the other hand, although it exhibits relatively high error, does not degrade much in transfer. Bias dominated in our experiments, suggesting that transferability might be easily increased by detecting and correcting for bias. Also, given that many monitoring applications involve the deployment of many sensor packages based on the same sensing technology, there is an opportunity to leverage the availability of multiple sensors at multiple sites during calibration to lower the cost of training and better tolerate transfer. We contribute a new neural network architecture model termed split-NN that splits the model into two stages, in which the first stage corrects for sensor-to-sensor variation and the second stage uses the combined data of all the sensors to build a model for a single sensor package. The split-NN modeling approach outperforms multiple linear regression, traditional two- and four-layer neural networks, and random forest models. Depending on the training configuration, compared to random forest the split-NN method reduced error 0 %–11 % for NO2 and 6 %–13 % for O3. 
    more » « less
  2. null (Ed.)
    Although there is increasing awareness of disparities in COVID-19 infection risk among vulnerable communities, the effect of behavioral interventions at the scale of individual neighborhoods has not been fully studied. We develop a method to quantify neighborhood activity behaviors at high spatial and temporal resolutions and test whether, and to what extent, behavioral responses to social-distancing policies vary with socioeconomic and demographic characteristics. We define exposure density ( E x ρ ) as a measure of both the localized volume of activity in a defined area and the proportion of activity occurring in distinct land-use types. Using detailed neighborhood data for New York City, we quantify neighborhood exposure density using anonymized smartphone geolocation data over a 3-mo period covering more than 12 million unique devices and rasterize granular land-use information to contextualize observed activity. Next, we analyze disparities in community social distancing by estimating variations in neighborhood activity by land-use type before and after a mandated stay-at-home order. Finally, we evaluate the effects of localized demographic, socioeconomic, and built-environment density characteristics on infection rates and deaths in order to identify disparities in health outcomes related to exposure risk. Our findings demonstrate distinct behavioral patterns across neighborhoods after the stay-at-home order and that these variations in exposure density had a direct and measurable impact on the risk of infection. Notably, we find that an additional 10% reduction in exposure density city-wide could have saved between 1,849 and 4,068 lives during the study period, predominantly in lower-income and minority communities. 
    more » « less
  3. null (Ed.)
    Environmental stresses borne of population growth, consumerism and industrialization have subjected many populations worldwide to elevated air pollution. Philadelphia, a historically industrial city in Northeastern United States, is ranked in the top 25 cities in the country for harmful air pollutants (PM2.5, ozone). Philadelphia also experiences 􀁋􀁖􀁉􀁅􀁘􀀄 􀆼􀁒􀁅􀁒􀁇􀁍􀁅􀁐􀀄 􀁗􀁘􀁖􀁅􀁘􀁍􀆼􀁇􀁅􀁘􀁍􀁓􀁒􀀄 􀁅􀁒􀁈􀀄 􀁉􀁒􀁚􀁍􀁖􀁓􀁒􀁑􀁉􀁒􀁘􀁅􀁐􀀄 􀁖􀁅􀁇􀁍􀁗􀁑􀀐􀀄 􀁛􀁌􀁍􀁇􀁌􀀄 􀁓􀁊􀁘􀁉􀁒􀀄 􀁙􀁒􀁊􀁅􀁍􀁖􀁐􀁝􀀄 􀁅􀁗􀁗􀁉􀁖􀁘􀁗􀀄 􀁘􀁌􀁉􀀄 􀁔􀁅􀁍􀁒􀁗􀀄 􀁓􀁊􀀄 􀁉􀁒􀁚􀁍􀁖􀁓􀁒􀁑􀁉􀁒􀁘􀁅􀁐􀀄 pollution & associated health effects on socioeconomically disadvantaged communities. This study seeks to succinctly 􀁕􀁙􀁅􀁒􀁘􀁍􀁊􀁝􀀄􀁛􀁌􀁍􀁇􀁌􀀄􀁔􀁓􀁔􀁙􀁐􀁅􀁘􀁍􀁓􀁒􀁗􀀄􀁑􀁅􀁝􀀄􀁆􀁉􀀄􀁅􀁘􀀄􀁖􀁍􀁗􀁏􀀄􀁊􀁓􀁖􀀄􀁌􀁉􀁅􀁐􀁘􀁌􀀄􀁉􀁊􀁊􀁉􀁇􀁘􀁗􀀄􀁅􀁗􀁗􀁓􀁇􀁍􀁅􀁘􀁉􀁈􀀄􀁛􀁍􀁘􀁌􀀄􀁅􀁍􀁖􀀄􀁔􀁓􀁐􀁐􀁙􀁘􀁍􀁓􀁒􀀄􀀌􀁗􀁔􀁉􀁇􀁍􀆼􀁇􀁅􀁐􀁐􀁝􀀄􀁅􀁗􀁘􀁌􀁑􀁅􀀐􀀄􀁇􀁌􀁖􀁓􀁒􀁍􀁇􀀄 obstructive pulmonary disease) through a suite of census-derived attributes. Using ArcMap Geographical Information System software (ESRI), attributes, categorized as promoting vulnerability or adaptability, are combined with air pollution data collected in summer 2019 to form a non-weighted ‘Social Vulnerability Index’ (SVI) at a census-tract level for Philadelphia. SVI demonstrated several clusters of neighborhoods with great disparities in socioeconomic factors. The census tracts with higher SVI tended to have higher levels of asthma and COPD (and vice versa). With improvements and acknowledgement of Philadelphia’s uniqueness, SVI of this kind may be used to inform policymakers on city planning (e.g. placement of future highways, industrial centers, etc.) to alleviate compounded respiratory/ pulmonary-related stresses on disadvantaged communities. Future analysis including green space coverage, other 􀁊􀁓􀁖􀁑􀁗􀀄􀁓􀁊􀀄􀁅􀁍􀁖􀀄􀁔􀁓􀁐􀁐􀁙􀁘􀁍􀁓􀁒􀀐􀀄􀁅􀁒􀁈􀀓􀁓􀁖􀀄􀁅􀀄􀁕􀁙􀁅􀁒􀁘􀁍􀆼􀁇􀁅􀁘􀁍􀁓􀁒􀀄􀁓􀁊􀀄􀁗􀁓􀁇􀁍􀁅􀁐􀀄􀁇􀁓􀁒􀁒􀁉􀁇􀁘􀁍􀁚􀁍􀁘􀁝􀀄􀁑􀁅􀁝􀀄􀁌􀁉􀁐􀁔􀀄􀁘􀁓􀀄􀁍􀁑􀁔􀁖􀁓􀁚􀁉􀀄􀁊􀁙􀁖􀁘􀁌􀁉􀁖􀀄􀁙􀁒􀁈􀁉􀁖􀁗􀁘􀁅􀁒􀁈􀁍􀁒􀁋􀀄􀁓􀁊􀀄􀁘􀁌􀁉􀀄 intersection between socioeconomic factors, air pollution, and health in Philadelphia, PA. 
    more » « less
  4. Abstract

    Multiple stressors acting simultaneously on ecological communities are the new normal state. Stressor number and strength will increase with rising anthropogenic activity, making it critical to understand both stressor effects and interactions. Stressor temporal regimes vary in intensity, frequency, and duration, ranging from press to pulse. While stressors with different temporal regimes likely have divergent effects, this remains mostly unexplored, though there is some evidence communities are more resistant to pulse than press stressors. Coral reefs are among the most impacted marine communities, and degradation from coral to algal dominance has been attributed to increases in both local and global stressors. Overfishing, nutrient pollution, and increased sedimentation are all local stressors that have been implicated in shift dynamics. Nutrients and sediments are anthropogenically derived stressors to reefs that can have press and pulse temporal regimes. We conducted a 6‐month fully crossed factorial field experiment on algal turf communities in Moorea, French Polynesia, manipulating access by herbivores, enrichment regime, and sedimentation regime and tracked changes in benthic community composition. We found complex interactions among stressors and stressor regimes drove a series of transitions from healthy, short algal turf communities to degraded, long algal turfs, and ultimately to macroalgal‐dominated communities. While herbivory controlled final community composition after 6 months, 2‐ and 3‐way interactions among nutrient and sediment temporal stressor regimes over time drove transition dynamics, and matching of stressor temporal regimes accelerated shifts. Some stressors cryptically eroded the resilience of the community, which was only evident when the strong ecological processes that masked these effects were disrupted. Our research highlights the need to consider temporal stressor regime as well as stressor interactions, particularly in light of predicted increases in both local and global stressors and alterations to stressor temporal regimes. Our understanding of the impacts of local stressor temporal regimes is in its infancy. Here, we provide a novel demonstration that the effects of stressor temporal regime varied and multiple stressors interacted to exhibit complex, emergent interaction effects, demonstrating the need to explicitly contrast stressor temporal regimes under multiple conditions to understand how communities will respond to future challenges.

     
    more » « less
  5. Online social communities are becoming windows for learning more about the health of populations, through information about our health-related behaviors and outcomes from daily life. At the same time, just as public health data and theory has shown that aspects of the built environment can affect our health-related behaviors and outcomes, it is also possible that online social environments (e.g., posts and other attributes of our online social networks) can also shape facets of our life. Given the important role of the online environment in public health research and implications, factors which contribute to the generation of such data must be well understood. Here we study the role of the built and online social environments in the expression of dining on Instagram in Abu Dhabi; a ubiquitous social media platform, city with a vibrant dining culture, and a topic (food posts) which has been studied in relation to public health outcomes. Our study uses available data on user Instagram profiles and their Instagram networks, as well as the local food environment measured through the dining types (e.g., casual dining restaurants, food court restaurants, lounges etc.) by neighborhood. We find evidence that factors of the online social environment (profiles that post about dining versus profiles that do not post about dining) have different influences on the relationship between a user’s built environment and the social dining expression, with effects also varying by dining types in the environment and time of day. We examine the mechanism of the relationships via moderation and mediation analyses. Overall, this study provides evidence that the interplay of online and built environments depend on attributes of said environments and can also vary by time of day. We discuss implications of this synergy for precisely-targeting public health interventions, as well as on using online data for public health research. 
    more » « less