skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 1828910

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Rapid urbanization and escalating climate change impacts have heightened stormwater-related concerns (e.g., pluvial flooding) in cities. Understanding catchment dynamics and characteristics, including precise catchment mapping, is essential to accurate surface water monitoring and management. Traditionally, topography is the primary data set used to model surface water flow dynamics in undisturbed natural landscapes. However, urban systems also contain stormwater drainage infrastructure, which can alter catchment boundaries and runoff behavior. Acknowledging both natural and built environmental influences, this study introduces three GIS-based approaches to enhance urban catchment mapping: (1) Modifying DEM elevations at inlet locations; (2) Adjusting DEM elevations along pipeline paths; (3) Applying the QGRASS plug-in to systematically incorporate infrastructure data. Our evaluation using the geographical Friedman test (p > 0.05) and Dice Similarity Coefficient (DSC = 0.80) confirms the statistical and spatial consistency among the studying methods. Coupled with onsite flow direction validation, these results support the feasibility and reliability of integrating elements of nature and built infrastructure in urban catchment mapping. The refined mapping approaches explored in this study offer improved and more accurate and efficient urban drainage catchment zoning, beyond using elevation and topographic data alone. Likewise, these methods bolster predictive stormwater management at catchment scales, ultimately strengthening urban stormwater and flooding resilience. 
    more » « less
    Free, publicly-accessible full text available December 1, 2025
  2. Elkins, Christopher A (Ed.)
    ABSTRACT Antibiotics are often used to treat severeVibrioinfections, with third-generation cephalosporins and tetracyclines combined or fluoroquinolones alone being recommended by the US Centers for Disease Control and Prevention. Increases in antibiotic resistance of both environmental and clinical vibrios are of concern; however, limited longitudinal data have been generated among environmental isolates to inform how resistance patterns may be changing over time. Hence, we evaluated long-term trends in antibiotic resistance of vibrios isolated from Chesapeake Bay waters (Maryland) across two 3-year sampling periods (2009–2012 and 2019–2022).Vibrio parahaemolyticus(n= 134) andVibrio vulnificus(n= 94) toxR-confirmed isolates were randomly selected from both sampling periods and tested for antimicrobial susceptibility against eight antibiotics using the Kirby-Bauer disk diffusion method. A high percentage (94%–96%) ofV. parahaemolyticusisolates from both sampling periods were resistant to ampicillin and only 2%–6% of these isolates expressed intermediate resistance or resistance to third-generation cephalosporins, amikacin, tetracycline, and trimethoprim-sulfamethoxazole. Even lower percentages of resistantV. vulnificusisolates were observed and those were mostly recovered from 2009 to 2012, however, the presence of multiple virulence factors was observed. The frequency of multi-drug resistance was relatively low (6%–8%) but included resistance against antibiotics used to treat severe vibriosis in adults and children. All isolates were susceptible to ciprofloxacin, a fluoroquinolone, indicating its sustained efficacy as a first-line agent in the treatment of severe vibriosis. Overall, our data indicate that antibiotic resistance patterns amongV. parahaemolyticusandV. vulnificusrecovered from the lower Chesapeake Bay have remained relatively stable since 2009.IMPORTANCEVibriospp. have historically been susceptible to most clinically relevant antibiotics; however, resistance and intermediate-resistance have been increasingly recorded in both environmental and clinical isolates. Our data showed that while the percentage of multi-drug resistance and resistance to antibiotics was relatively low and stable across time, someVibrioisolates displayed resistance and intermediate resistance to antibiotics typically used to treat severe vibriosis (e.g., third-generation cephalosporins, tetracyclines, sulfamethoxazole-trimethoprim, and aminoglycosides). Also, given the high case fatality rates observed withVibrio vulnificusinfections, the presence of multiple virulence factors in the tested isolates is concerning. Nevertheless, the continued susceptibility of all tested isolates against ciprofloxacin, a fluoroquinolone, is indicative of its use as an effective first-line treatment of severeVibriospp. infections stemming from exposure to Chesapeake Bay waters or contaminated seafood ingestion. 
    more » « less
    Free, publicly-accessible full text available June 18, 2025
  3. Wang, Luxin (Ed.)
    ABSTRACT Alternative irrigation waters (rivers, ponds, and reclaimed water) can harbor bacterial foodborne pathogens likeSalmonella entericaandListeria monocytogenes, potentially contaminating fruit and vegetable commodities. Detecting foodborne pathogens using qPCR-based methods may accelerate testing methods and procedures compared to culture-based methods. This study compared detectionof S. enterica and L. monocytogenesby qPCR (real-time PCR) and culture methods in irrigation waters to determine the influence of water type (river, pond, and reclaimed water), season (winter, spring, summer, and fall), or volume (0.1, 1, and 10 L) on sensitivity, accuracy, specificity, and positive (PPV), and negative (NPV) predictive values of these methods. Water samples were collected by filtration through modified Moore swabs (MMS) over a 2-year period at 11 sites in the Mid-Atlantic U.S. on a bi-weekly or monthly schedule. For qPCR, bacterial DNA from culture-enriched samples (n= 1,990) was analyzed by multiplex qPCR specific forS. entericaandL. monocytogenes. For culture detection, enriched samples were selectively enriched, isolated, and PCR confirmed. PPVs for qPCR detection ofS. entericaandL. monocytogeneswere 68% and 67%, respectively. The NPV were 87% (S. enterica) and 85% (L. monocytogenes). Higher levels of qPCR/culture agreement were observed in spring and summer compared to fall and winter forS. enterica; forL. monocytogenes, lower levels of agreement were observed in winter compared to spring, summer, and fall. Reclaimed and pond water supported higher levels of qPCR/culture agreement compared to river water for bothS. entericaandL. monocytogenes, indicating that water type may influence the agreement of these results. IMPORTANCEDetecting foodborne pathogens in irrigation water can inform interventions and management strategies to reduce risk of contamination and illness associated with fresh and fresh-cut fruits and vegetables. The use of non-culture methods like qPCR has the potential to accelerate the testing process. Results indicated that pond and reclaimed water showed higher levels of agreement between culture and qPCR methods than river water, perhaps due to specific physiochemical characteristics of the water. These findings also show that season and sample volume affect the agreement of qPCR and culture results. Overall, qPCR methods could be more confidently utilized to determine the absence ofSalmonella entericaandListeria monocytogenesin irrigation water samples examined in this study. 
    more » « less
  4. Abstract Tobacco use significantly influences the oral microbiome. However, less is known about how different tobacco products specifically impact the oral microbiome over time. To address this knowledge gap, we characterized the oral microbiome of cigarette users, smokeless tobacco users, and non-users over 4 months (four time points). Buccal swab and saliva samples (n = 611) were collected from 85 participants. DNA was extracted from all samples and sequencing was carried out on an Illumina MiSeq, targeting the V3–V4 region of the 16S rRNA gene. Cigarette and smokeless tobacco users had more diverse oral bacterial communities, including a higher relative abundance ofFirmicutesand a lower relative abundance ofProteobacteria, when compared to non-users. Non-users had a higher relative abundance ofActinomyces, Granulicatella, Haemophilus, Neisseria, Oribacterium, Prevotella, Pseudomonas, Rothia, andVeillonellain buccal swab samples, compared to tobacco users. While the most abundant bacterial genera were relatively constant over time, some species demonstrated significant shifts in relative abundance between the first and last time points. In addition, some opportunistic pathogens were detected among tobacco users includingNeisseria subflava, Bulleidia mooreiandPorphyromonas endodontalis. Overall, our results provide a more holistic understanding of the structure of oral bacterial communities in tobacco users compared to non-users. 
    more » « less
  5. Abstract The reproductive success of birds is closely tied to the characteristics of their nests. It is crucial to understand the distribution of nest traits across phylogenetic and geographic dimensions to gain insight into bird evolution and adaptation. Despite the extensive historical documentation on breeding behavior, a structured dataset describing bird nest characteristics has been lacking. To address this gap, we have compiled a comprehensive dataset that characterizes three ecologically and evolutionarily significant nest traits—site, structure, and attachment—for 9,248 bird species, representing all 36 orders and 241 out of the 244 families. By defining seven sites, seven structures, and four attachment types, we have systematically classified the nests of each species using information from text descriptions, photos, and videos sourced from online databases and literature. This nest traits dataset serves as a valuable addition to the existing body of morphological and ecological trait data for bird species, providing a useful resource for a wide range of avian macroecological and macroevolutionary research. 
    more » « less
  6. Abstract Climate change presents huge challenges to the already-complex decisions faced by U.S. agricultural producers, as seasonal weather patterns increasingly deviate from historical tendencies. Under USDA funding, a transdisciplinary team of researchers, extension experts, educators, and stakeholders is developing a climate decision support Dashboard for Agricultural Water use and Nutrient management (DAWN) to provide Corn Belt farmers with better predictive information. DAWN’s goal is to provide credible, usable information to support decisions by creating infrastructure to make subseasonal-to-seasonal forecasts accessible. DAWN uses an integrated approach to 1) engage stakeholders to coproduce a decision support and information delivery system; 2) build a coupled modeling system to represent and transfer holistic systems knowledge into effective tools; 3) produce reliable forecasts to help stakeholders optimize crop productivity and environmental quality; and 4) integrate research and extension into experiential, transdisciplinary education. This article presents DAWN’s framework for integrating climate–agriculture research, extension, and education to bridge science and service. We also present key challenges to the creation and delivery of decision support, specifically in infrastructure development, coproduction and trust building with stakeholders, product design, effective communication, and moving tools toward use. 
    more » « less
  7. Abstract Understanding how climate affects trait composition within a biological assemblage is critical for assessing and eventually mitigating climate change impacts on the assemblage and its ecological functioning. While body size is a fundamental trait of animals as it affects many aspects of species' biology and ecology, it remains unclear through what mechanisms temperature and its variability influence within‐assemblage body size variation.This study aims to understand how temperature and its variability shape body size variations in animal assemblages and potentially affect assemblages' vulnerability to climate change. Using >5300 individuals of 680 macromoth species collected from 13 assemblages along a ca. 3000 m elevational gradient in Taiwan, we examined (1) the strength of environmental filtering and niche partitioning in determining the intra‐ and inter‐specific size variations within an assemblage, and (2) the effects of mean temperature and the daily and seasonal temperature variabilities on the strength of the two processes.We found that the body size composition was strongly affected by temperature and its seasonality via both processes. High temperature seasonality enhanced niche partitioning, causing within‐population size convergence. In contrast, low mean temperature and low seasonality both enhanced environmental filtering, causing within‐assemblage size convergence. However, while low temperature restricted the lower size limit within an assemblage, low seasonality restricted both lower and upper size limits.This study indicates an overlooked but important role of temperature seasonality in shaping intra‐ and inter‐specific size variations in moth assemblages through both environmental filtering and niche partitioning. With rising temperatures and amplifying seasonality around the globe, potentially weakened filtering forces may increase the size variation within assemblages, reinforcing the assemblage‐level resilience. Nevertheless, enhanced niche partitioning may limit size variation within populations, which may increase the population‐level vulnerability to environmental changes. This study improves the mechanistic understanding of the climatic effects on trait composition in animal assemblages and provides essential information for biodiversity conservation under climate change. Read the freePlain Language Summaryfor this article on the Journal blog. 
    more » « less
  8. Abstract Advanced treated municipal wastewater is an important alternative water source for agricultural irrigation. However, the possible persistence of chemical and microbiological contaminants in these waters raise potential safety concerns with regard to reusing treated wastewater for food crop irrigation. Two low-cost and environmentally-friendly filter media, biochar (BC) and zero-valent iron (ZVI), have attracted great interest in terms of treating reused water. Here, we evaluated the efficacy of BC-, nanosilver-amended biochar- (Ag-BC) and ZVI-sand filters, in reducing contaminants of emerging concern (CECs),Escherichia coli (E. coli)and total bacterial diversity from wastewater effluent. Six experiments were conducted with control quartz sand and sand columns containing BC, Ag-BC, ZVI, BC with ZVI, or Ag-BC with ZVI. After filtration, Ag-BC, ZVI, BC with ZVI and Ag-BC with ZVI demonstrated more than 90% (> 1 log) removal ofE. colifrom wastewater samples, while BC, Ag-BC, BC with ZVI and Ag-BC with ZVI also demonstrated efficient removal of tested CECs. Lower bacterial diversity was also observed after filtration; however, differences were marginally significant. In addition, significantly (p < 0.05) higher bacterial diversity was observed in wastewater samples collected during warmer versus colder months. Leaching of silver ions occurred from Ag-BC columns; however, this was prevented through the addition of ZVI. In conclusion, our data suggest that the BC with ZVI and Ag-BC with ZVI sand filters, which demonstrated more than 99% removal of both CECs andE. coliwithout silver ion release, may be effective, low-cost options for decentralized treatment of reused wastewater. Graphical Abstract 
    more » « less
  9. Abstract Climate change is impacting global crop productivity, and agricultural land suitability is predicted to significantly shift in the future. Responses to changing conditions and increasing yield variability can range from altered management strategies to outright land use conversions that may have significant environmental and socioeconomic ramifications. However, the extent to which agricultural land use changes in response to variations in climate is unclear at larger scales. Improved understanding of these dynamics is important since land use changes will have consequences not only for food security but also for ecosystem health, biodiversity, carbon storage, and regional and global climate. In this study, we combine land use products derived from the Moderate Resolution Imaging Spectroradiometer with climate reanalysis data from the European Centre for Medium-Range Weather Forecasts Reanalysis v5 to analyze correspondence between changes in cropland and changes in temperature and water availability from 2001 to 2018. While climate trends explained little of the variability in land cover changes, increasing temperature, extreme heat days, potential evaporation, and drought severity were associated with higher levels of cropland loss. These patterns were strongest in regions with more cropland change, and generally reflected underlying climate suitability—they were amplified in hotter and drier regions, and reversed direction in cooler and wetter regions. At national scales, climate response patterns varied significantly, reflecting the importance of socioeconomic, political, and geographic factors, as well as differences in adaptation strategies. This global-scale analysis does not attempt to explain local mechanisms of change but identifies climate-cropland patterns that exist in aggregate and may be hard to perceive at local scales. It is intended to supplement regional studies, providing further context for locally-observed phenomena and highlighting patterns that require further analysis. 
    more » « less
  10. Abstract BackgroundInfections with nontyphoidalSalmonellacause an estimated 19,336 hospitalizations each year in the United States. Sources of infection can vary by state and include animal and plant-based foods, as well as environmental reservoirs. Several studies have recognized the importance of increased ambient temperature and precipitation in the spread and persistence ofSalmonellain soil and food. However, the impact of extreme weather events onSalmonellainfection rates among the most prevalent serovars, has not been fully evaluated across distinct U.S. regions. MethodsTo address this knowledge gap, we obtainedSalmonellacase data forS.Enteriditis,S.Typhimurium,S.Newport, andS.Javiana (2004-2014; n = 32,951) from the Foodborne Diseases Active Surveillance Network (FoodNet), and weather data from the National Climatic Data Center (1960-2014). Extreme heat and precipitation events for the study period (2004-2014) were identified using location and calendar day specific 95thpercentile thresholds derived using a 30-year baseline (1960-1989). Negative binomial generalized estimating equations were used to evaluate the association between exposure to extreme events and salmonellosis rates. ResultsWe observed that extreme heat exposure was associated with increased rates of infection withS.Newport in Maryland (Incidence Rate Ratio (IRR): 1.07, 95% Confidence Interval (CI): 1.01, 1.14), and Tennessee (IRR: 1.06, 95% CI: 1.04, 1.09), both FoodNet sites with high densities of animal feeding operations (e.g., broiler chickens and cattle). Extreme precipitation events were also associated with increased rates ofS.Javiana infections, by 22% in Connecticut (IRR: 1.22, 95% CI: 1.10, 1.35) and by 5% in Georgia (IRR: 1.05, 95% CI: 1.01, 1.08), respectively. In addition, there was an 11% (IRR: 1.11, 95% CI: 1.04-1.18) increased rate ofS. Newport infections in Maryland associated with extreme precipitation events. ConclusionsOverall, our study suggests a stronger association between extreme precipitation events, compared to extreme heat, and salmonellosis across multiple U.S. regions. In addition, the rates of infection withSalmonellaserovars that persist in environmental or plant-based reservoirs, such asS.Javiana andS.Newport, appear to be of particular significance regarding increased heat and rainfall events. 
    more » « less