A classic reachability problem for safety of dynamic systems is to compute the set of initial states from which the state trajectory is guaranteed to stay inside a given constraint set over a given time horizon. In this paper, we leverage existing theory of reachability analysis and risk measures to devise a risk-sensitive reachability approach for safety of stochastic dynamic systems under non-adversarial disturbances over a finite time horizon. Specifically, we first introduce the notion of a risk-sensitive safe set as a set of initial states from which the risk of large constraint violations can be reduced to a required level via a control policy, where risk is quantified using the Conditional Value-at-Risk (CVaR) measure. Second, we show how the computation of a risk-sensitive safe set can be reduced to the solution to a Markov Decision Process (MDP), where cost is assessed according to CVaR. Third, leveraging this reduction, we devise a tractable algorithm to approximate a risk-sensitive safe set, and provide theoretical arguments about its correctness. Finally, we present a realistic example inspired from stormwater catchment design to demonstrate the utility of risk-sensitive reachability analysis. In particular, our approach allows a practitioner to tune the level of risk sensitivity from worst-case (which is typical for Hamilton-Jacobi reachability analysis) to risk-neutral (which is the case for stochastic reachability analysis).
more »
« less
Reachability Analysis for Cyber-Physical Systems: Are We There Yet?
Reachability analysis is a fundamental problem in verification that checks for a given model and set of initial states if the system will reach a given set of unsafe states. Its importance lies in the ability to exhaustively explore the behaviors of a model over a finite or infinite time horizon. The problem of reachability analysis for Cyber-Physical Systems (CPS) is especially challenging because it involves reasoning about the continuous states of the system as well as its switching behavior. Each of these two aspects can by itself cause the reachability analysis problem to be undecidable. In this paper, we survey recent progress in this field beginning with the success of hybrid systems with affine dynamics. We then examine the current state-of-the-art for CPS with nonlinear dynamics and those driven by ``learning-enabled'' components such as neural networks. We conclude with an examination of some promising directions and open challenges.
more »
« less
- PAR ID:
- 10347868
- Editor(s):
- Deshmukh, Jyotirmoy V.; Havelund, Klaus; Perez, Ivan
- Date Published:
- Journal Name:
- Lecture notes in computer science
- ISSN:
- 1611-3349
- Page Range / eLocation ID:
- 109-130
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
A classic reachability problem for safety of dynamic systems is to compute the set of initial states from which the state trajectory is guaranteed to stay inside a given constraint set over a given time horizon. In this paper, we leverage existing theory of reachability analysis and risk measures to devise a risk-sensitive reachability approach for safety of stochastic dynamic systems under non-adversarial disturbances over a finite time horizon. Specifically, we first introduce the notion of a risk-sensitive safe set as a set of initial states from which the risk of large constraint violations can be reduced to a required level via a control policy, where risk is quantified using the Conditional Value-at-Risk (CVaR) measure. Second, we show how the computation of a risk-sensitive safe set can be reduced to the solution to a Markov Decision Process (MDP), where cost is assessed according to CVaR. Third, leveraging this reduction, we devise a tractable algorithm to approximate a risk-sensitive safe set, and provide theoretical arguments about its correctness. Finally, we present a realistic example inspired from stormwater catchment design to demonstrate the utility of risk-sensitive reachability analysis. In particular, our approach allows a practitioner to tune the level of risk sensitivity from worst-case (which is typical for Hamilton-Jacobi reachability analysis) to risk-neutral (which is the case for stochastic reachability analysis).more » « less
-
A classic reachability problem for safety of dynamic systems is to compute the set of initial states from which the state trajectory is guaranteed to stay inside a given constraint set over a given time horizon. In this paper, we leverage existing theory of reachability analysis and risk measures to devise a risk-sensitive reachability approach for safety of stochastic dynamic systems under non-adversarial disturbances over a finite time horizon. Specifically, we first introduce the notion of a risk-sensitive safe set asa set of initial states from which the risk of large constraint violations can be reduced to a required level via a control policy, where risk is quantified using the Conditional Value-at-Risk(CVaR) measure. Second, we show how the computation of a risk-sensitive safe set can be reduced to the solution to a Markov Decision Process (MDP), where cost is assessed according to CVaR. Third, leveraging this reduction, we devise a tractable algorithm to approximate a risk-sensitive safe set and provide arguments about its correctness. Finally, we present a realistic example inspired from stormwater catchment design to demonstrate the utility of risk-sensitive reachability analysis. In particular, our approach allows a practitioner to tune the level of risk sensitivity from worst-case (which is typical for Hamilton-Jacobi reachability analysis) to risk-neutral (which is the case for stochastic reachability analysis).more » « less
-
In this paper, we study efficient approaches to reachability analysis for discrete-time nonlinear dynamical systems when the dependencies among the variables of the system have low treewidth. Reachability analysis over nonlinear dynamical systems asks if a given set of target states can be reached, starting from an initial set of states. This is solved by computing conservative over approximations of the reachable set using abstract domains to represent these approximations. However, most approaches must tradeoff the level of conservatism against the cost of performing analysis, especially when the number of system variables increases. This makes reachability analysis challenging for nonlinear systems with a large number of state variables. Our approach works by constructing a dependency graph among the variables of the system. The tree decomposition of this graph builds a tree wherein each node of the tree is labeled with subsets of the state variables of the system. Furthermore, the tree decomposition satisfies important structural properties. Using the tree decomposition, our approach abstracts a set of states of the high dimensional system into a tree of sets of lower dimensional projections of this state. We derive various properties of this abstract domain, including conditions under which the original high dimensional set can be fully recovered from its low dimensional projections. Next, we use ideas from message passing developed originally for belief propagation over Bayesian networks to perform reachability analysis over the full state space in an efficient manner. We illustrate our approach on some interesting nonlinear systems with low treewidth to demonstrate the advantages of our approach.more » « less
-
null (Ed.)In this paper, we study efficient approaches to reachability analysis for discrete-time nonlinear dynamical systems when the dependencies among the variables of the system have low treewidth. Reachability analysis over nonlinear dynamical systems asks if a given set of target states can be reached, starting from an initial set of states. This is solved by computing conservative over approximations of the reachable set using abstract domains to represent these approximations. However, most approaches must tradeoff the level of conservatism against the cost of performing analysis, especially when the number of system variables increases. This makes reachability analysis challenging for nonlinear systems with a large number of state variables. Our approach works by constructing a dependency graph among the variables of the system. The tree decomposition of this graph builds a tree wherein each node of the tree is labeled with subsets of the state variables of the system. Furthermore, the tree decomposition satisfies important structural properties. Using the tree decomposition, our approach abstracts a set of states of the high dimensional system into a tree of sets of lower dimensional projections of this state. We derive various properties of this abstract domain, including conditions under which the original high dimensional set can be fully recovered from its low dimensional projections. Next, we use ideas from message passing developed originally for belief propagation over Bayesian networks to perform reachability analysis over the full state space in an efficient manner. We illustrate our approach on some interesting nonlinear systems with low treewidth to demonstrate the advantages of our approach.more » « less