skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Combining Filtering and Cross-Correlation Efficiently for Streaming Time Series
Monitoring systems have hundreds or thousands of distributed sensors gathering and transmitting real-time streaming data. The early detection of events in these systems, such as an earthquake in a seismic monitoring system, is the base for essential tasks as warning generations. To detect such events is usual to compute pairwise correlation across the disparate signals generated by the sensors. Since the data sources (e.g., sensors) are spatially separated, it is essential to consider the lagged correlation between the signals. Besides, many applications require to process a specific band of frequencies depending on the event’s type, demanding a pre-processing step of filtering before computing correlations. Due to the high speed of data generation and a large number of sensors in these systems, the operations of filtering and lagged cross-correlation need to be efficient to provide real-time responses without data losses. This article proposes a technique named FilCorr that efficiently computes both operations in one single step. We achieve an order of magnitude speedup by maintaining frequency transforms over sliding windows. Our method is exact, devoid of sensitive parameters, and easily parallelizable. Besides our algorithm, we also provide a publicly available real-time system named Seisviz that employs FilCorr in its core mechanism for monitoring a seismometer network. We demonstrate that our technique is suitable for several monitoring applications as seismic signal monitoring, motion monitoring, and neural activity monitoring.  more » « less
Award ID(s):
2104537
PAR ID:
10348049
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
ACM Transactions on Knowledge Discovery from Data
Volume:
16
Issue:
5
ISSN:
1556-4681
Page Range / eLocation ID:
1 to 24
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    An essential task on streaming time series data is to compute pairwise correlation across disparate signal sources to identify significant events. In many monitoring applications, such as geospatial monitoring, motion monitoring and critical infrastructure monitoring, correlation is observed at various frequency bands and temporal lags. In this paper, we consider computing filtered and lagged correlation on streaming time series data, which is challenging because the computation must be “in-sync” with the incoming stream for any detected events to be useful. We propose a technique to compute filtered and lagged correlation on streaming data efficiently by merging two individual operations: filtering and cross-correlations. We achieve an order of magnitude speed-up by maintaining frequency transforms over sliding windows. Our method is exact, devoid of sensitive parameters, and easily parallelizable. We demonstrate our technique in a seismic signal monitoring application. 
    more » « less
  2. Seismic monitoring systems sift through seismograms in real-time, searching for target events, such as underground explosions. In this monitoring system, a burst of aftershocks (minor earthquakes occur after a major earthquake over days or even years) can be a source of confounding signals. Such a burst of aftershock signals can overload the human analysts of the monitoring system. To alleviate this burden at the onset of a sequence of events (e.g., aftershocks), a human analyst can label the first few of these events and start an online classifier to filter out subsequent aftershock events. We propose an online few-shot classification model FewSig for time series data for the above use case. The framework of FewSig consists of a selective model to identify the high-confidence positive events which are used for updating the models and a general classifier to label the remaining events. Our specific technique uses a %two-level decision tree selective model based on sliding DTW distance and a general classifier model based on distance metric learning with Neighborhood Component Analysis (NCA). The algorithm demonstrates surprising robustness when tested on univariate datasets from the UEA/UCR archive. Furthermore, we show two real-world earthquake events where the FewSig reduces the human effort in monitoring applications by filtering out the aftershock events. 
    more » « less
  3. The COVID-19 pandemic has intensified the need for home-based cardiac health monitoring systems. Despite advancements in electrocardiograph (ECG) and phonocardiogram (PCG) wearable sensors, accurate heart sound segmentation algorithms remain understudied. Existing deep learning models, such as convolutional neural networks (CNN) and recurrent neural networks (RNN), struggle to segment noisy signals using only PCG data. We propose a two-step heart sound segmentation algorithm that analyzes synchronized ECG and PCG signals. The first step involves heartbeat detection using a CNN-LSTM-based model on ECG data, and the second step focuses on beat-wise heart sound segmentation with a 1D U-Net that incorporates multi-modal inputs. Our method leverages temporal correlation between ECG and PCG signals to enhance segmentation performance. To tackle the label-hungry issue in AI-supported biomedical studies, we introduce a segment-wise contrastive learning technique for signal segmentation, overcoming the limitations of traditional contrastive learning methods designed for classification tasks. We evaluated our two-step algorithm using the PhysioNet 2016 dataset and a private dataset from Bayland Scientific, obtaining a 96.43 F1 score on the former. Notably, our segment-wise contrastive learning technique demonstrated effective performance with limited labeled data. When trained on just 1% of labeled PhysioNet data, the model pre-trained on the full unlabeled dataset only dropped 2.88 in the F1 score, outperforming the SimCLR method. Overall, our proposed algorithm and learning technique present promise for improving heart sound segmentation and reducing the need for labeled data. 
    more » « less
  4. Step length is a critical gait parameter that allows a quantitative assessment of gait asymmetry. Gait asymmetry can lead to many potential health threats such as joint degeneration, difficult balance control, and gait inefficiency. Therefore, accurate step length estimation is essential to understand gait asymmetry and provide appropriate clinical interventions or gait training programs. The conventional method for step length measurement relies on using foot-mounted inertial measurement units (IMUs). However, this may not be suitable for real-world applications due to sensor signal drift and the potential obtrusiveness of using distal sensors. To overcome this challenge, we propose a deep convolutional neural network-based step length estimation using only proximal wearable sensors (hip goniometer, trunk IMU, and thigh IMU) capable of generalizing to various walking speeds. To evaluate this approach, we utilized treadmill data collected from sixteen able-bodied subjects at different walking speeds. We tested our optimized model on the overground walking data. Our CNN model estimated the step length with an average mean absolute error of 2.89 ± 0.89 cm across all subjects and walking speeds. Since wearable sensors and CNN models are easily deployable in real-time, our study findings can provide personalized real-time step length monitoring in wearable assistive devices and gait training programs. 
    more » « less
  5. Volcanic earthquake catalogs are an essential data product used to interpret subsurface volcanic activity and forecast eruptions. Advances in detection techniques (e.g., matched-filtering, machine learning) and relative relocation tools have improved catalog completeness and refined event locations. However, most volcano observatories have yet to incorporate these techniques into their catalog-building workflows. This is due in part to complexities in operationalizing, automating, and calibrating these techniques in a satisfactory way for disparate volcano networks and their varied seismicity. In an effort to streamline the integration of catalog-enhancing tools at the Alaska Volcano Observatory (AVO), we have integrated four popular open-source tools: REDPy, EQcorrscan, HypoDD, and GrowClust. The combination of these tools offers the capability of adding seismic event detections and relocating events in a single workflow. The workflow relies on a combination of standard triggering and cross-correlation clustering (REDPy) to consolidate representative templates used in matched-filtering (EQcorrscan). The templates and their detections are then relocated using the differential time methods provided by HypoDD and/or GrowClust. Our workflow also provides codes to incorporate campaign data at appropriate junctures, and calculate magnitude and frequency index for valid events. We apply this workflow to three datasets: the 2012–2013 seismic swarm sequence at Mammoth Mountain (California), the 2009 eruption of Redoubt Volcano (Alaska), and the 2006 eruption of Augustine Volcano (Alaska); and compare our results with previous studies at each volcano. In general, our workflow provides a significant increase in the number of events and improved locations, and we relate the event clusters and temporal progressions to relevant volcanic activity. We also discuss workflow implementation best practices, particularly in applying these tools to sparse volcano seismic networks. We envision that our workflow and the datasets presented here will be useful for detailed volcano analyses in monitoring and research efforts. 
    more » « less