skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: AutoAspect: Automatic Annotation of Tense and Aspect for Uniform Meaning Representations
We present AutoAspect, a novel, rule-based annotation tool for labeling tense and aspect. The pilot version annotates English data. The aspect labels are designed specifically for Uniform Meaning Representations (UMR), an annotation schema that aims to encode crosslingual semantic information. The annotation tool combines syntactic and semantic cues to assign aspects on a sentence-by-sentence basis, following a sequence of rules that each output a UMR aspect. Identified events proceed through the sequence until they are assigned an aspect. We achieve a recall of 76.17% for identifying UMR events and an accuracy of 62.57% on all identified events, with high precision values for 2 of the aspect labels.  more » « less
Award ID(s):
1764048
PAR ID:
10348147
Author(s) / Creator(s):
; ;
Editor(s):
Claire Bonial, Nianwen Xue
Date Published:
Journal Name:
Proceedings of The Joint 15th Linguistic Annotation Workshop (LAW) and 3rd Designing Meaning Representations (DMR) Workshop
Page Range / eLocation ID:
36 to 45
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    In this paper we present Uniform Meaning Representation (UMR), a meaning representation designed to annotate the semantic content of a text. UMR is primarily based on Abstract Meaning Representation (AMR), an annotation framework initially designed for English, but also draws from other meaning representations. UMR extends AMR to other languages, particularly morphologically complex, low-resource languages. UMR also adds features to AMR that are critical to semantic interpretation and enhances AMR by proposing a companion document-level representation that captures linguistic phenomena such as coreference as well as temporal and modal dependencies that potentially go beyond sentence boundaries. 
    more » « less
  2. Bonial, Claire; Bonn, Julia; Hwang, Jena D (Ed.)
    We explore using LLMs, GPT-4 specifically, to generate draft sentence-level Chinese Uniform Meaning Representations (UMRs) that human annotators can revise to speed up the UMR annotation process. In this study, we use few-shot learning and Think-Aloud prompting to guide GPT-4 to generate sentence-level graphs of UMR. Our experimental results show that compared with annotating UMRs from scratch, using LLMs as a preprocessing step reduces the annotation time by two thirds on average. This indicates that there is great potential for integrating LLMs into the pipeline for complicated semantic annotation tasks. 
    more » « less
  3. Bonial, Claire; Bonn, Julia; Hwang, Jena D (Ed.)
    We explore using LLMs, GPT-4 specifically, to generate draft sentence-level Chinese Uniform Meaning Representations (UMRs) that human annotators can revise to speed up the UMR annotation process. In this study, we use few-shot learning and Think-Aloud prompting to guide GPT-4 to generate sentence-level graphs of UMR. Our experimental results show that compared with annotating UMRs from scratch, using LLMs as a preprocessing step reduces the annotation time by two thirds on average. This indicates that there is great potential for integrating LLMs into the pipeline for complicated semantic annotation tasks. 
    more » « less
  4. UMR-Writer is a web-based tool for annotating semantic graphs with the Uniform Meaning Representation (UMR) scheme. UMR is a graph-based semantic representation that can be applied cross-linguistically for deep semantic analysis of texts. In this work, we implemented a new keyboard interface in UMR-Writer 2.0, which is a powerful addition to the original mouse interface, supporting faster annotation for more experienced annotators. The new interface also addresses issues with the original mouse interface. Additionally, we demonstrate an efficient workflow for annotation project management in UMR-Writer 2.0, which has been applied to many projects. 
    more » « less
  5. Calzolari, Nicoletta; Kan, Min-Yen; Hoste, Veronique; Lenci, Alessandro; Sakti, Sakriani; Xue, Nianwen (Ed.)
    This paper reports the first release of the UMR (Uniform Meaning Representation) data set. UMR is a graph-based meaning representation formalism consisting of a sentence-level graph and a document-level graph. The sentence-level graph represents predicate-argument structures, named entities, word senses, aspectuality of events, as well as person and number information for entities. The document-level graph represents coreferential, temporal, and modal relations that go beyond sentence boundaries. UMR is designed to capture the commonalities and variations across languages and this is done through the use of a common set of abstract concepts, relations, and attributes as well as concrete concepts derived from words from invidual languages. This UMR release includes annotations for six languages (Arapaho, Chinese, English, Kukama, Navajo, Sanapana) that vary greatly in terms of their linguistic properties and resource availability. We also describe on-going efforts to enlarge this data set and extend it to other genres and modalities. We also briefly describe the available infrastructure (UMR annotation guidelines and tools) that others can use to create similar data sets. 
    more » « less