Understanding relationships among multimodal data extracted from a smartphone-based electrochemiluminescence (ECL) sensor is crucial for the development of low-cost point-of-care diagnostic devices. In this work, artificial intelligence (AI) algorithms such as random forest (RF) and feedforward neural network (FNN) are used to quantitatively investigate the relationships between the concentration of Ru ( bpy ) 3 2 + luminophore and its experimentally measured ECL and electrochemical data. A smartphone-based ECL sensor with Ru ( bpy ) 3 2 + /TPrA was developed using disposable screen-printed carbon electrodes. ECL images and amperograms were simultaneously obtained following 1.2-V voltage application. These multimodal data were analyzed by RF and FNN algorithms, which allowed the prediction of Ru ( bpy ) 3 2 + concentration using multiple key features. High correlation (0.99 and 0.96 for RF and FNN, respectively) between actual and predicted values was achieved in the detection range between 0.02 µM and 2.5 µM. The AI approaches using RF and FNN were capable of directly inferring the concentration of Ru ( bpy ) 3 2 + using easily observable key features. The results demonstrate that data-driven AI algorithms are effective in analyzing the multimodal ECL sensor data. Therefore, these AI algorithms can be an essential part of the modeling arsenal with successful application in ECL sensor data modeling.
more »
« less
Machine Learning Analysis for Phenolic Compound Monitoring Using a Mobile Phone-Based ECL Sensor
Machine learning (ML) can be an appropriate approach to overcoming common problems associated with sensors for low-cost, point-of-care diagnostics, such as non-linearity, multidimensionality, sensor-to-sensor variations, presence of anomalies, and ambiguity in key features. This study proposes a novel approach based on ML algorithms (neural nets, Gaussian Process Regression, among others) to model the electrochemiluminescence (ECL) quenching mechanism of the [Ru(bpy)3]2+/TPrA system by phenolic compounds, thus allowing their detection and quantification. The relationships between the concentration of phenolic compounds and their effect on the ECL intensity and current data measured using a mobile phone-based ECL sensor is investigated. The ML regression tasks with a tri-layer neural net using minimally processed time series data showed better or comparable detection performance compared to the performance using extracted key features without extra preprocessing. Combined multimodal characteristics produced an 80% more enhanced performance with multilayer neural net algorithms than a single feature based-regression analysis. The results demonstrated that the ML could provide a robust analysis framework for sensor data with noises and variability. It demonstrates that ML strategies can play a crucial role in chemical or biosensor data analysis, providing a robust model by maximizing all the obtained information and integrating nonlinearity and sensor-to-sensor variations.
more »
« less
- Award ID(s):
- 1706597
- PAR ID:
- 10348317
- Date Published:
- Journal Name:
- Sensors
- Volume:
- 21
- Issue:
- 18
- ISSN:
- 1424-8220
- Page Range / eLocation ID:
- 6004
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Conventional black box machine learning (ML) algorithms for gas-phase species identification from THz frequency region absorption spectra have been reported in the literature. While the robust classification performance of such ML models is promising, the black box nature of these ML tools limits their interpretability and acceptance in application. Here, a one-dimensional convolutional neural network (CNN), VOC-Net, is developed and demonstrated for the classification of absorption spectra for volatile organic compounds (VOCs) in the THz frequency range, specifically from 220 to 330 GHz where prior experimental data is available. VOC-Net is trained and validated against simulated spectra, and also demonstrated and tested against experimental spectra. The performance of VOC-Net is examined by the consideration of confusion matrices and receiver-operator-characteristic (ROC) curves. The model is shown to be 99+% accurate for the classification of simulated spectra and 97% accurate for the classification of noisy experimental spectra. The model’s internal logic is examined using the Gradient-weighted Class Activation Mapping (Grad-CAM) method, which provides a visual and interpretable explanation of the model’s decision making process with respect to the important distinguishing spectral features.more » « less
-
Abstract We report a machine learning approach to accurately correlate the impedance variations in zinc oxide/multi walled carbon nanotube nanocomposite (F-MWCNT/ZnO-NFs) to NH4+ions concentrations. Impedance response of F-MWCNT/ZnO-NFs nanocomposites with varying ZnO:MWCNT compositions were evaluated for its sensitivity and selectivity to NH4+ions in the presence of structurally similar analytes. A decision-making model was built, trained and tested using important features of the impedance response of F-MWCNT/ZnO-NF to varying NH4+concentrations. Different algorithms such as kNN, random forest, neural network, Naïve Bayes and logistic regression are compared and discussed. ML analysis have led to identify the most prominent features of an impedance spectrum that can be used as the ML predictors to estimate the real concentration of NH4+ion levels. The proposed NH4+sensor along with the decision-making model can identify and operate at specific operating frequencies to continuously collect the most relevant information from a system.more » « less
-
Stress detection and monitoring is an active area of research with important implications for an individual's personal, professional, and social health. Current approaches for stress classification use traditional machine learning algorithms trained on features computed from multiple sensor modalities. These methods are data and computation-intensive, rely on hand-crafted features, and lack reproducibility. These limitations impede the practical use of stress detection and classification systems in the real world. To overcome these shortcomings, we propose Stressalyzer, a novel stress classification and personalization framework from single-modality sensor data without feature computation and selection. Stressalyzer uses only Electrodermal activity (EDA) sensor data while providing competitive results compared to the state-of-the-art techniques that use multiple sensor modalities and are computationally expensive due to the calculation of large number of features. Using the dataset collected in a laboratory setting from $15$ subjects, our single-channel neural network-based model achieves a classification accuracy of 92.9% and an f1 score of 0.89 for binary stress classification. Our leave-one-subject-out analysis establishes the subjective nature of stress and shows that personalizing stress models using Stressalyzer significantly improves the model performance. Without model personalization, we found a performance decline in 40% of the subjects, suggesting the need for model personalization.more » « less
-
null (Ed.)Abstract Background Drug sensitivity prediction and drug responsive biomarker selection on high-throughput genomic data is a critical step in drug discovery. Many computational methods have been developed to serve this purpose including several deep neural network models. However, the modular relations among genomic features have been largely ignored in these methods. To overcome this limitation, the role of the gene co-expression network on drug sensitivity prediction is investigated in this study. Methods In this paper, we first introduce a network-based method to identify representative features for drug response prediction by using the gene co-expression network. Then, two graph-based neural network models are proposed and both models integrate gene network information directly into neural network for outcome prediction. Next, we present a large-scale comparative study among the proposed network-based methods, canonical prediction algorithms (i.e., Elastic Net, Random Forest, Partial Least Squares Regression, and Support Vector Regression), and deep neural network models for drug sensitivity prediction. All the source code and processed datasets in this study are available at https://github.com/compbiolabucf/drug-sensitivity-prediction . Results In the comparison of different feature selection methods and prediction methods on a non-small cell lung cancer (NSCLC) cell line RNA-seq gene expression dataset with 50 different drug treatments, we found that (1) the network-based feature selection method improves the prediction performance compared to Pearson correlation coefficients; (2) Random Forest outperforms all the other canonical prediction algorithms and deep neural network models; (3) the proposed graph-based neural network models show better prediction performance compared to deep neural network model; (4) the prediction performance is drug dependent and it may relate to the drug’s mechanism of action. Conclusions Network-based feature selection method and prediction models improve the performance of the drug response prediction. The relations between the genomic features are more robust and stable compared to the correlation between each individual genomic feature and the drug response in high dimension and low sample size genomic datasets.more » « less