Detecting stress from wearable sensor data enables those struggling with unhealthy stress coping mechanisms to better manage their stress. Previous studies have investigated how mechanisms for detecting stress from sensor data can be optimized, comparing alternative algorithms and approaches to find the best possible outcome. One strategy to make these mechanisms more accessible is to reduce the number of sensors that wearable devices must support. Reducing the number of sensors will enable wearable devices to be a smaller size, require less battery, and last longer, making use of these wearable devices more accessible. To progress towards this more convenient stress detection mechanism, we investigate how learning algorithms perform on singular modalities and compare the outcome with results from multiple modalities. We found that singular modalities performed comparably or better than combined modalities on two stress-detection datasets, suggesting that there is promise for detecting stress with fewer sensor requirements. From the four modalities we tested, acceleration, blood volume pulse, and electrodermal activity, we saw acceleration and electrodermal activity to stand out in a few cases, but all modalities showed potential. Our results are acquired from testing with random holdout and leave-one-subject-out validation, using several machine learning techniques. Our results can inspire work on optimizing stress detection with singular modalities to make the benefits of these detection mechanisms more convenient.
more »
« less
Stressalyzer: Convolutional Neural Network Framework for Personalized Stress Classification
Stress detection and monitoring is an active area of research with important implications for an individual's personal, professional, and social health. Current approaches for stress classification use traditional machine learning algorithms trained on features computed from multiple sensor modalities. These methods are data and computation-intensive, rely on hand-crafted features, and lack reproducibility. These limitations impede the practical use of stress detection and classification systems in the real world. To overcome these shortcomings, we propose Stressalyzer, a novel stress classification and personalization framework from single-modality sensor data without feature computation and selection. Stressalyzer uses only Electrodermal activity (EDA) sensor data while providing competitive results compared to the state-of-the-art techniques that use multiple sensor modalities and are computationally expensive due to the calculation of large number of features. Using the dataset collected in a laboratory setting from $15$ subjects, our single-channel neural network-based model achieves a classification accuracy of 92.9% and an f1 score of 0.89 for binary stress classification. Our leave-one-subject-out analysis establishes the subjective nature of stress and shows that personalizing stress models using Stressalyzer significantly improves the model performance. Without model personalization, we found a performance decline in 40% of the subjects, suggesting the need for model personalization.
more »
« less
- Award ID(s):
- 2210133
- PAR ID:
- 10325315
- Date Published:
- Journal Name:
- The 44th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC 2022)
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Physiological and behavioral data collected from wearable or mobile sensors have been used to estimate self-reported stress levels. Since stress annotation usually relies on self-reports during the study, a limited amount of labeled data can be an obstacle to developing accurate and generalized stress-predicting models. On the other hand, the sensors can continuously capture signals without annotations. This work investigates leveraging unlabeled wearable sensor data for stress detection in the wild. We propose a two-stage semi-supervised learning framework that leverages wearable sensor data to help with stress detection. The proposed structure consists of an auto-encoder pre-training method for learning information from unlabeled data and the consistency regularization approach to enhance the robustness of the model. Besides, we propose a novel active sampling method for selecting unlabeled samples to avoid introducing redundant information to the model. We validate these methods using two datasets with physiological signals and stress labels collected in the wild, as well as four human activity recognition (HAR) datasets to evaluate the generality of the proposed method. Our approach demonstrated competitive results for stress detection, improving stress classification performance by approximately 7% to 10% on the stress detection datasets compared to the baseline supervised learning models. Furthermore, the ablation study we conducted for the HAR tasks supported the effectiveness of our methods. Our approach showed comparable performance to state-of-the-art semi-supervised learning methods for both stress detection and HAR tasks.more » « less
-
Machine learning (ML) can be an appropriate approach to overcoming common problems associated with sensors for low-cost, point-of-care diagnostics, such as non-linearity, multidimensionality, sensor-to-sensor variations, presence of anomalies, and ambiguity in key features. This study proposes a novel approach based on ML algorithms (neural nets, Gaussian Process Regression, among others) to model the electrochemiluminescence (ECL) quenching mechanism of the [Ru(bpy)3]2+/TPrA system by phenolic compounds, thus allowing their detection and quantification. The relationships between the concentration of phenolic compounds and their effect on the ECL intensity and current data measured using a mobile phone-based ECL sensor is investigated. The ML regression tasks with a tri-layer neural net using minimally processed time series data showed better or comparable detection performance compared to the performance using extracted key features without extra preprocessing. Combined multimodal characteristics produced an 80% more enhanced performance with multilayer neural net algorithms than a single feature based-regression analysis. The results demonstrated that the ML could provide a robust analysis framework for sensor data with noises and variability. It demonstrates that ML strategies can play a crucial role in chemical or biosensor data analysis, providing a robust model by maximizing all the obtained information and integrating nonlinearity and sensor-to-sensor variations.more » « less
-
null (Ed.)Hyperdimensional (HD) computing holds promise for classifying two groups of data. This paper explores seizure detection from electroencephalogram (EEG) from subjects with epilepsy using HD computing based on power spectral density (PSD) features. Publicly available intra-cranial EEG (iEEG) data collected from 4 dogs and 8 human patients in the Kaggle seizure detection contest are used in this paper. This paper explores two methods for classification. First, few ranked PSD features from small number of channels from a prior classification are used in the context of HD classification. Second, all PSD features extracted from all channels are used as features for HD classification. It is shown that for about half the subjects small number features outperform all features in the context of HD classification, and for the other half, all features outperform small number of features. HD classification achieves above 95% accuracy for six of the 12 subjects, and between 85-95% accuracy for 4 subjects. For two subjects, the classification accuracy using HD computing is not as good as classical approaches such as support vector machine classifiers.more » « less
-
Automated canopy stress classification for field crops has traditionally relied on single-perspective, two-dimensional (2D) photographs, usually obtained through top-view imaging using unmanned aerial vehicles (UAVs). However, this approach may fail to capture the full extent of plant stress symptoms, which can manifest throughout the canopy. Recent advancements in LiDAR technologies have enabled the acquisition of high-resolution 3D point cloud data for the entire canopy, offering new possibilities for more accurate plant stress identification and rating. This study explores the potential of leveraging 3D point cloud data for improved plant stress assessment. We utilized a dataset of RGB 3D point clouds of 700 soybean plants from a diversity panel exposed to iron deficiency chlorosis (IDC) stress. From this unique set of 700 canopies exhibiting varying levels of IDC, we extracted several representations, including (a) handcrafted IDC symptom-specific features, (b) canopy fingerprints, and (c) latent feature-based features. Subsequently, we trained several classification models to predict plant stress severity using these representations. We exhaustively investigated several stress representations and model combinations for the 3-D data. We also compared the performance of these classification models against similar models that are only trained using the associated top-view 2D RGB image for each plant. Among the feature-model combinations tested, the 3D canopy fingerprint features trained with a support vector machine yielded the best performance, achieving higher classification accuracy than the best-performing model based on 2D data built using convolutional neural networks. Our findings demonstrate the utility of color canopy fingerprinting and underscore the importance of considering 3D data to assess plant stress in agricultural applications.more » « less