skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Effects of the Uncertainty of Hurricane Tracks on Coastal Hazards and Evacuations
Hurricanes cause devastating amounts of damage to structures and infrastructure. It harms especially those coastal residents along its track. Over the last couple of years, evacuation planning for populated coastal regions has been challenging and time-consuming due to the uncertainty of the hurricane’s track. As such, with a focus on Northwest Florida, this research aims to focus on the development of evacuation scenarios for coastal communities that combines hurricane inundation and strong wind forecast and evacuation modeling. The proposed approach integrates storm surge simulation models (ADCIRC and SWAN modeling) and traffic evacuation models (Cube and TIME) by using hurricane forecasting datasets to explore the designation of evacuation zones and the calculation of evacuation clearance times in different counties. This approach was applied to three distinct scenarios with a focus on possible populated coastal cities that Hurricane Michael would have hit in 2018. Selected cities are Pensacola, Destin, and Panama City. This type of approach has the potential to help agencies make more informed decisions on evacuations using the accuracy and timeliness of forecasts and provide safer evacuations in coastal areas by avoiding the traffic jams on evacuation routes.  more » « less
Award ID(s):
1832068
PAR ID:
10477553
Author(s) / Creator(s):
Publisher / Repository:
International Journal of Structural and Civil Engineering Research
Date Published:
Journal Name:
International journal of structural and civil engineering research
Volume:
11
Issue:
4
ISSN:
2319-6009
Page Range / eLocation ID:
99-107
Subject(s) / Keyword(s):
hurricane uncertainty, storm surge, evacuation modeling, hurricane evacuation
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract In addition to measuring forecast accuracy in terms of errors in a tropical system’s forecast track and other meteorological characteristics, it is important to measure the impact of those errors on society. With this in mind, the authors designed a coupled natural–human modeling framework with high-level representations of the natural hazard (hurricane), the human system (information flow, evacuation decisions), the built environment (road infrastructure), and connections between elements (forecasts and warning information, traffic). Using the model, this article begins exploring how tropical cyclone forecast errors impact evacuations and, in doing so, builds toward the development of new verification approaches. Specifically, the authors implement track errors representative of 2007 and 2022, and create situations with unexpected rapid intensification and/or rapid onset, and evaluate their impact on evacuations across real and hypothetical forecast scenarios (e.g., Hurricane Irma, Hurricane Dorian making landfall across east Florida). The results provide first-order evidence that 1) reduced forecast track errors across the 2007–22 period translate to improvements in evacuation outcomes across these cases and 2) unexpected rapid intensification and/or rapid onset scenarios can reduce evacuation rates, and increase traffic, across the most impacted areas. In exploring these relationships, the results demonstrate how experiments with coupled natural–human models can offer a societally relevant complement to traditional metrics of forecast accuracy. In doing so, this work points toward further development of natural–human models and associated methodologies to address these types of questions and improve forecast verification across the weather enterprise. 
    more » « less
  2. In addition to measuring forecast accuracy in terms of errors in a tropical system’s forecast track and other meteorological characteristics, it is important to measure the impact of those errors on society. With this in mind, the authors designed a coupled natural–human modeling framework with high-level representations of the natural hazard (hurricane), the human system (information flow, evacuation decisions), the built environment (road infrastructure), and connec- tions between elements (forecasts and warning information, traffic). Using the model, this article begins exploring how tropical cyclone forecast errors impact evacuations and, in doing so, builds toward the development of new verification approaches. Specifically, the authors implement track errors representative of 2007 and 2022, and create situations with unexpected rapid intensifica- tion and/or rapid onset, and evaluate their impact on evacuations across real and hypothetical forecast scenarios (e.g., Hurricane Irma, Hurricane Dorian making landfall across east Florida). The results provide first-order evidence that 1) reduced forecast track errors across the 2007–22 period translate to improvements in evacuation outcomes across these cases and 2) unexpected rapid intensification and/or rapid onset scenarios can reduce evacuation rates, and increase traffic, across the most impacted areas. In exploring these relationships, the results demonstrate how experiments with coupled natural–human models can offer a societally relevant complement to traditional metrics of forecast accuracy. In doing so, this work points toward further development of natural–human models and associated methodologies to address these types of questions and improve forecast verification across the weather enterprise. 
    more » « less
  3. Hurricane evacuations require fast updates of coastal inundation predictions based on the update of hurricane forecasting track. NOAA usually updates the hurricane track at about 6 hr interval. This paper presents a multi-scale nested modeling method for faster simulations of storm surge and coastal inundations. A medium-resolution model with minimum mesh size of 1200 m for the Gulf of Mexico is used to simulate the storm surge in the Gulf of Mexico. A high-resolution model with 120m-150m mesh sizes is used to predict coastal inundations in the area of potential hurricane landfall. A nested modeling method has been developed to transfer boundary conditions from the large-scale storm surge model to the nested local-scale high-resolution model. The nested models have been satisfactorily validated and applied in the case study of Hurricane Michael. Results indicate that, by applying the nested models, it takes about 85 minutes for the simulation of one hurricane track for a 5-day forecasting, which will provide sufficient time before the next NOAA forecast update of hurricane’s track in 6 hour interval. The nested model application to the case study of Hurricane Michael demonstrates the coastal inundation patterns in the city of Mexico Beach with the root-mean-square error of 0.12 m from all measurement stations. Results of the nested model inundations on coastal critical infrastructure and roadways are further used with models that investigate risk assessments to support hurricane mitigation planning and evacuation operations sufficiently in advance. 
    more » « less
  4. Abstract An integrated storm surge modeling and traffic analysis were conducted in this study to assess the effectiveness of hurricane evacuations through a case study of Hurricane Irma. The Category 5 hurricane in 2017 caused a record evacuation with an estimated 6.8 million people relocating statewide in Florida. The Advanced Circulation (ADCIRC) model was applied to simulate storm tides during the hurricane event. Model validations indicated that simulated pressures, winds, and storm surge compared well with observations. Model simulated storm tides and winds were used to estimate the area affected by Hurricane Irma. Results showed that the storm surge and strong wind mainly affected coastal counties in south-west Florida. Only moderate storm tides (maximum about 2.5 m) and maximum wind speed about 115 mph were shown in both model simulations and Federal Emergency Management Agency (FEMA) post-hurricane assessment near the area of hurricane landfall. Storm surges did not rise to the 100-year flood elevation level. The maximum wind was much below the design wind speed of 150–170 mph (Category 5) as defined in Florida Building Code (FBC) for south Florida coastal areas. Compared with the total population of about 2.25 million in the six coastal counties affected by storm surge and Category 1–3 wind, the statewide evacuation of approximately 6.8 million people was found to be an over-evacuation due mainly to the uncertainty of hurricane path, which shifted from south-east to south-west Florida. The uncertainty of hurricane tracks made it difficult to predict the appropriate storm surge inundation zone for evacuation. Traffic data were used to analyze the evacuation traffic patterns. In south-east Florida, evacuation traffic started 4 days before the hurricane’s arrival. However, the hurricane path shifted and eventually landed in south-west Florida, which caused a high level of evacuation traffic in south-west Florida. Over-evacuation caused Evacuation Traffic Index ( ETI ) to increase to 200% above normal conditions in some sections of highways, which reduced the effectiveness of evacuation. Results from this study show that evacuation efficiency can be improved in the future by more accurate hurricane forecasting, better public awareness of real-time storm surge and wind as well as integrated storm surge and evacuation modeling for quick response to the uncertainty of hurricane forecasting. 
    more » « less
  5. Public emergencies pose catastrophic casualties and financial losses in densely populated areas, rendering communities such as cities, towns, and universities particularly susceptible due to their intricate environments and high pedestrian traffic. While simulation analysis offers a flexible and cost-effective approach to evaluating evacuation procedures, conventional evacuation models are often limited to specific scenarios and communities, overlooking the diverse range of emergencies and evacuee behaviors. Thus, there is an urgent need for an evacuation model capable of capturing complex structures of communities and modeling evacuee responses to various emergencies. This paper presents a novel approach to simulating responsive evacuation behaviors for multiple emergency situations in public communities through spatial network modeling and multi-agent modeling. Leveraging a community network framework adaptable to different community layouts based on map data, the proposed model employs a multi-agent approach to characterize responsive and decentralized evacuation decision-making. Experimental results show the model’s efficacy in representing pedestrian flow and pedestrians’ reactive behavior across various campuses based on real-world map data. Additionally, the case study highlights the potential of the proposed model to simulate pedestrian dynamics for a variety of heterogeneous emergencies. The proposed community evacuation model holds strong promise for evaluating evacuation policies and providing insights into resilient plans during public emergencies, thereby enhancing community safety. 
    more » « less