Abstract Forest characteristics, structure, and dynamics within the North American boreal region are heavily influenced by wildfire intensity, severity, and frequency. Increasing temperatures are likely to result in drier conditions and longer fire seasons, potentially leading to more intense and frequent fires. However, an increase in deciduous forest cover is also predicted across the region, potentially decreasing flammability. In this study, we use an individual tree-based forest model to test bottom-up (i.e. fuels) vs top-down (i.e. climate) controls on fire activity and project future forest and wildfire dynamics. The University of Virginia Forest Model Enhanced is an individual tree-based forest model that has been successfully updated and validated within the North American boreal zone. We updated the model to better characterize fire ignition and behavior in relation to litter and fire weather conditions, allowing for further interactions between vegetation, soils, fire, and climate. Model output following updates showed good agreement with combustion observations at individual sites within boreal Alaska and western Canada. We then applied the updated model at sites within interior Alaska and the Northwest Territories to simulate wildfire and forest response to climate change under moderate (RCP 4.5) and extreme (RCP 8.5) scenarios. Results suggest that changing climate will act to decrease biomass and increase deciduous fraction in many regions of boreal North America. These changes are accompanied by decreases in fire probability and average fire intensity, despite fuel drying, indicating a negative feedback of fuel loading on wildfire. These simulations demonstrate the importance of dynamic fuels and dynamic vegetation in predicting future forest and wildfire conditions. The vegetation and wildfire changes predicted here have implications for large-scale changes in vegetation composition, biomass, and wildfire severity across boreal North America, potentially resulting in further feedbacks to regional and even global climate and carbon cycling.
more »
« less
Projected increases in western US forest fire despite growing fuel constraints
Abstract Escalating burned area in western US forests punctuated by the 2020 fire season has heightened the need to explore near-term macroscale forest-fire area trajectories. As fires remove fuels for subsequent fires, feedbacks may impose constraints on the otherwise climate-driven trend of increasing forest-fire area. Here, we test how fire-fuel feedbacks moderate near-term (2021–2050) climate-driven increases in forest-fire area across the western US. Assuming constant fuels, climate–fire models project a doubling of forest-fire area compared to 1991–2020. Fire-fuel feedbacks only modestly attenuate the projected increase in forest-fire area. Even models with strong feedbacks project increasing interannual variability in forest-fire area and more than a two-fold increase in the likelihood of years exceeding the 2020 fire season. Fuel limitations from fire-fuel feedbacks are unlikely to strongly constrain the profound climate-driven broad-scale increases in forest-fire area by the mid-21st century, highlighting the need for proactive adaptation to increased western US forest-fire impacts.
more »
« less
- PAR ID:
- 10348389
- Date Published:
- Journal Name:
- Communications Earth & Environment
- Volume:
- 2
- Issue:
- 1
- ISSN:
- 2662-4435
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Climate change has intensified the scale of global wildfire impacts in recent decades. In order to reduce fire impacts, management policies are being proposed in the western United States to lower fire risk that focus on harvesting trees, including large-diameter trees. Many policies already do not include diameter limits and some recent policies have proposed diameter increases in fuel reduction strategies. While the primary goal is fire risk reduction, these policies have been interpreted as strategies that can be used to save trees from being killed by fire, thus preventing carbon emissions and feedbacks to climate warming. This interpretation has already resulted in cutting down trees that likely would have survived fire, resulting in forest carbon losses that are greater than if a wildfire had occurred. To help policymakers and managers avoid these unintended carbon consequences and to present carbon emission sources in the same context, we calculate western United States forest fire carbon emissions and compare them with harvest and fossil fuel emissions (FFE) over the same timeframe. We find that forest fire carbon emissions are on average only 6% of anthropogenic FFE over the past decade. While wildfire occurrence and area burned have increased over the last three decades, per area fire emissions for extreme fire events are relatively constant. In contrast, harvest of mature trees releases a higher density of carbon emissions (e.g., per unit area) relative to wildfire (150–800%) because harvest causes a higher rate of tree mortality than wildfire. Our results show that increasing harvest of mature trees to save them from fire increases emissions rather than preventing them. Shown in context, our results demonstrate that reducing FFEs will do more for climate mitigation potential (and subsequent reduction of fire) than increasing extractive harvest to prevent fire emissions. On public lands, management aimed at less-intensive fuels reduction (such as removal of “ladder” fuels, i.e., shrubs and small-diameter trees) will help to balance reducing catastrophic fire and leave live mature trees on the landscape to continue carbon uptake.more » « less
-
Abstract The area burned in the western United States during the 2020 fire season was the greatest in the modern era. Here we show that the number of human‐caused fires in 2020 also was elevated, nearly 20% higher than the 1992–2019 average. Although anomalously dry conditions enabled ignitions to spread and contributed to record area burned, these conditions alone do not explain the surge in the number of human‐caused ignitions. We argue that behavioral shifts aimed at curtailing the spread of COVID‐19 altered human‐environment interactions to favor increased ignitions. For example, the number of recreation‐caused wildfires during summer was 36% greater than the 1992–2019 average; this increase was likely a function of increased outdoor recreational activity in response to social distancing measures. We hypothesize that the combination of anomalously dry conditions and COVID‐19 social disruptions contributed to widespread increases in human‐caused ignitions, adding complexity to fire management efforts during the 2020 western US fire season. Knowledge of how social behavior changes indirectly contributed to the increased number of ignitions in the 2020 wildfire season can help inform resource management in an increasingly flammable world.more » « less
-
The vast Angara region, with an area of 13.8 million ha, is located in the southern taiga of central Siberia, Russia. This is one of the most disturbed regions by both fire and logging in northern Asia. We have developed surface and ground fuel-load maps by integrating satellite and ground-based data with respect to the forest-growing conditions and the disturbance of the territory by anthropogenic and natural factors (fires and logging). We found that from 2001 to 2020, fuel loads increased by 8% in the study region, mainly due to a large amount of down woody debris at clearcuts and burned sites. The expansion of the disturbed areas in the Angara region resulted in an increase in natural fire hazards in spring and summer. Annual carbon emissions from fires varied from 0.06 to 6.18 Mt, with summer emissions accounting for more than 95% in extreme fire years and 31–68% in the years of low fire activity. While the trend in the increase in annual carbon emissions from fires is not statistically significant due to its high interannual variability and a large disturbance of the study area, there are significantly increasing trends in mean carbon emissions from fires per unit area (p < 0.005) and decadal means (p < 0.1). In addition, we found significant trends in the increase in emissions released by severe fires (p < 0.005) and by fires in wetter, dark, coniferous (spruce, p < 0.005 and Siberian pine, p < 0.025) forests. This indicates deeper burning and loss of legacy carbon that impacts on the carbon cycle resulting in climate feedback.more » « less
-
Abstract In the Western US, area burned and fire size have increased due to the influences of climate change, long-term fire suppression leading to higher fuel loads, and increased ignitions. However, evidence is less conclusive about increases in fire severity within these growing wildfire extents. Fires burn unevenly across landscapes, leaving islands of unburned or less impacted areas, known as fire refugia. Fire refugia may enhance post-fire ecosystem function and biodiversity by providing refuge to species and functioning as seed sources after fires. In this study, we evaluated whether the proportion and pattern of fire refugia within fire events have changed over time and across ecoregions. To do so, we processed all available Landsat 4–9 satellite imagery to identify fire refugia within the boundaries of large wildfires (405 ha+) in 16 forested ecoregions of the Western US. We found a significant change in % refugia from 1986–2021 only in one ecoregion—% refugia increased within fires in the Arizona/New Mexico Mountain ecoregion (AZ/NM). Excluding AZ/NM, we found no significant change in % refugia across the study area. Furthermore, we found no significant change in mean refugia patch size, patch density, or mean distance to refugia. As fire size increased, the amount of refugia increased proportionally. Evidence suggests that fires in AZ/NM had a higher proportion of reburns and, unlike the 15 other ecoregions, fires did not occur at higher elevation or within greener areas. We suggest several possibilities for why, with the exception of AZ/NM, ecoregions did not experience a significant change in the proportion and pattern of refugia. In summary, while area burned has increased over the past four decades, there are substantial and consistent patterns of refugia that could support post-fire recovery dependent on their spatial patterns and ability to function as seeds sources for neighboring burned patches.more » « less
An official website of the United States government

