skip to main content


Title: Forest Carbon Emission Sources Are Not Equal: Putting Fire, Harvest, and Fossil Fuel Emissions in Context
Climate change has intensified the scale of global wildfire impacts in recent decades. In order to reduce fire impacts, management policies are being proposed in the western United States to lower fire risk that focus on harvesting trees, including large-diameter trees. Many policies already do not include diameter limits and some recent policies have proposed diameter increases in fuel reduction strategies. While the primary goal is fire risk reduction, these policies have been interpreted as strategies that can be used to save trees from being killed by fire, thus preventing carbon emissions and feedbacks to climate warming. This interpretation has already resulted in cutting down trees that likely would have survived fire, resulting in forest carbon losses that are greater than if a wildfire had occurred. To help policymakers and managers avoid these unintended carbon consequences and to present carbon emission sources in the same context, we calculate western United States forest fire carbon emissions and compare them with harvest and fossil fuel emissions (FFE) over the same timeframe. We find that forest fire carbon emissions are on average only 6% of anthropogenic FFE over the past decade. While wildfire occurrence and area burned have increased over the last three decades, per area fire emissions for extreme fire events are relatively constant. In contrast, harvest of mature trees releases a higher density of carbon emissions (e.g., per unit area) relative to wildfire (150–800%) because harvest causes a higher rate of tree mortality than wildfire. Our results show that increasing harvest of mature trees to save them from fire increases emissions rather than preventing them. Shown in context, our results demonstrate that reducing FFEs will do more for climate mitigation potential (and subsequent reduction of fire) than increasing extractive harvest to prevent fire emissions. On public lands, management aimed at less-intensive fuels reduction (such as removal of “ladder” fuels, i.e., shrubs and small-diameter trees) will help to balance reducing catastrophic fire and leave live mature trees on the landscape to continue carbon uptake.  more » « less
Award ID(s):
1655121 1655183
NSF-PAR ID:
10348981
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Frontiers in Forests and Global Change
Volume:
5
ISSN:
2624-893X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Climate change has intensified the scale of global wildfire impacts in recent decades. To help policymakers and managers avoid these unintended carbon consequences and to present carbon emission sources in the same context, we calculate western US forest fire carbon emissions and compare them with harvest and fossil fuel emissions over the same timeframe. We find that forest fire carbon emissions are on average only 6% of anthropogenic fossil fuel emissions (FFE) over the past decade. While wildfire occurrence and area burned have increased over the last three decades, per area fire emissions for extreme fire events are relatively constant. In contrast, harvest of mature trees releases a higher density of carbon emissions (e.g., per unit area) relative to wildfire (150-800%) because harvest causes a higher rate of tree mortality than wildfire. Shown in context, our results demonstrate that reducing FFEs will do more for climate mitigation potential (and subsequent reduction of fire) than increasing extractive harvest to prevent fire emissions. 
    more » « less
  2. Abstract

    Wildfire is an essential earth‐system process, impacting ecosystem processes and the carbon cycle. Forest fires are becoming more frequent and severe, yet gaps exist in the modeling of fire on vegetation and carbon dynamics. Strategies for reducing carbon dioxide (CO2) emissions from wildfires include increasing tree harvest, largely based on the public assumption that fires burn live forests to the ground, despite observations indicating that less than 5% of mature tree biomass is actually consumed. This misconception is also reflected though excessive combustion of live trees in models. Here, we show that regional emissions estimates using widely implemented combustion coefficients are 59%–83% higher than emissions based on field observations. Using unique field datasets from before and after wildfires and an improved ecosystem model, we provide strong evidence that these large overestimates can be reduced by using realistic biomass combustion factors and by accurately quantifying biomass in standing dead trees that decompose over decades to centuries after fire (“snags”). Most model development focuses on area burned; our results reveal that accurately representing combustion is also essential for quantifying fire impacts on ecosystems. Using our improvements, we find that western US forest fires have emitted 851 ± 228 Tg CO2(~half of alternative estimates) over the last 17 years, which is minor compared to 16,200 Tg CO2from fossil fuels across the region.

     
    more » « less
  3. Abstract

    Escalating burned area in western US forests punctuated by the 2020 fire season has heightened the need to explore near-term macroscale forest-fire area trajectories. As fires remove fuels for subsequent fires, feedbacks may impose constraints on the otherwise climate-driven trend of increasing forest-fire area. Here, we test how fire-fuel feedbacks moderate near-term (2021–2050) climate-driven increases in forest-fire area across the western US. Assuming constant fuels, climate–fire models project a doubling of  forest-fire area compared to 1991–2020. Fire-fuel feedbacks only modestly attenuate the projected increase in forest-fire area. Even models with strong feedbacks project increasing interannual variability in forest-fire area and more than a two-fold increase in the likelihood of years exceeding the 2020 fire season. Fuel limitations from fire-fuel feedbacks are unlikely to strongly constrain the profound climate-driven broad-scale increases in forest-fire area by the mid-21st century, highlighting the need for proactive adaptation to increased western US forest-fire impacts.

     
    more » « less
  4. Abstract

    Forests mitigate climate change by sequestering massive amounts of carbon, but recent increases in wildfire activity are threatening carbon storage. Currently, our understanding of wildfire impacts on forest resilience and the mechanisms controlling post-fire recovery remains unresolved due to a lack of empirical data on mature trees in natural settings. Here, we quantify the physiological mechanisms controlling carbon uptake immediately following wildfire in mature individuals of ponderosa pine (Pinus ponderosa), a wide-spread and canopy-dominant tree species in fire-prone forests. While photosynthetic capacity was lower in burned than unburned trees due to an overall depletion of resources, we show that within the burned trees, photosynthetic capacity increases with the severity of damage. Our data reveal that boosts in the efficiency of carbon uptake at the leaf-level may compensate for whole-tree damage, including the loss of leaf area and roots. We further show that heightened photosynthetic capacity in remaining needles on burned trees may be linked with reduced water stress and leaf nitrogen content, providing pivotal information about post-fire physiological processes. Our results have implications for Earth system modeling efforts because measurements of species-level physiological parameters are used in models to predict ecosystem and landscape-level carbon trajectories. Finally, current land management practices do not account for physiological resilience and recovery of severely burned trees. Our results suggest premature harvest may remove individuals that may otherwise survive, irrevocably altering forest carbon balance.

     
    more » « less
  5. Abstract Forest characteristics, structure, and dynamics within the North American boreal region are heavily influenced by wildfire intensity, severity, and frequency. Increasing temperatures are likely to result in drier conditions and longer fire seasons, potentially leading to more intense and frequent fires. However, an increase in deciduous forest cover is also predicted across the region, potentially decreasing flammability. In this study, we use an individual tree-based forest model to test bottom-up (i.e. fuels) vs top-down (i.e. climate) controls on fire activity and project future forest and wildfire dynamics. The University of Virginia Forest Model Enhanced is an individual tree-based forest model that has been successfully updated and validated within the North American boreal zone. We updated the model to better characterize fire ignition and behavior in relation to litter and fire weather conditions, allowing for further interactions between vegetation, soils, fire, and climate. Model output following updates showed good agreement with combustion observations at individual sites within boreal Alaska and western Canada. We then applied the updated model at sites within interior Alaska and the Northwest Territories to simulate wildfire and forest response to climate change under moderate (RCP 4.5) and extreme (RCP 8.5) scenarios. Results suggest that changing climate will act to decrease biomass and increase deciduous fraction in many regions of boreal North America. These changes are accompanied by decreases in fire probability and average fire intensity, despite fuel drying, indicating a negative feedback of fuel loading on wildfire. These simulations demonstrate the importance of dynamic fuels and dynamic vegetation in predicting future forest and wildfire conditions. The vegetation and wildfire changes predicted here have implications for large-scale changes in vegetation composition, biomass, and wildfire severity across boreal North America, potentially resulting in further feedbacks to regional and even global climate and carbon cycling. 
    more » « less