skip to main content


Title: The effect of food insecurity during college on graduation and type of degree attained: evidence from a nationally representative longitudinal survey
Abstract Objective: To examine the effect of food insecurity during college on graduation and degree attainment. Design: Secondary analysis of longitudinal panel data. We measured food insecurity concurrent with college enrollment using the 18-question USDA Household Food Security Survey Module. Educational attainment was measured in 2015-2017 via two questions about college completion and highest degree attained. Logistic and multinomial-logit models adjusted for sociodemographic characteristics were estimated. Setting: United States (US) Participants: A nationally representative, balanced panel of 1,574 college students in the US in 1999-2003 with follow-up through 2015-2017 from the Panel Study of Income Dynamics. Results: In 1999-2003, 14.5% of college students were food insecure and were more likely to be older, non-White, and first-generation students. In adjusted models, food insecurity was associated with lower odds of college graduation (OR 0.57, 95% CI: 0.37, 0.88, p=0.01) and lower likelihood of obtaining a Bachelor’s degree (RRR 0.57 95% CI: 0.35, 0.92, p=0.02) or graduate/professional degree (RRR 0.39, 95% CI: 0.17, 0.86, p=0.022). These associations were more pronounced among first-generation students. 47.2% of first-generation students who experienced food insecurity graduated from college; food insecure first-generation students were less likely to graduate compared to first-generation students who were food secure (47.2% vs. 59.3%, p=0.020) and non-first-generation students who were food insecure (47.2% vs. 65.2%, p=0.037). Conclusions: Food insecurity during college is a barrier to graduation and higher degree attainment, particularly for first-generation students. Existing policies and programs that help mitigate food insecurity should be expanded and more accessible to the college student population.  more » « less
Award ID(s):
2042875
NSF-PAR ID:
10348449
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Public Health Nutrition
Volume:
25
Issue:
2
ISSN:
1368-9800
Page Range / eLocation ID:
1 to 22
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Objectives. To examine the effects of childhood participation in the Supplemental Nutrition Assistance Program (SNAP) and the Special Supplemental Nutrition Program for Women, Infants, and Children (WIC) on adult food security in the United States. Methods. We used data from the 1984 to 2019 waves of the Panel Study of Income Dynamics to follow a balanced panel of 1406 individuals from birth through ages 20 to 36 years. We measured food insecurity from 1999 to 2003 and 2015 to 2019 among those who resided in low-income households during childhood. Results. Twenty-eight percent of individuals who resided in low-income households during childhood exhibited improved food security status from childhood to adulthood. Those who participated in SNAP and WIC during childhood had 4.16-fold higher odds (95% confidence interval [CI] = 1.91, 9.03) of being more food secure than those who were eligible for but did not receive SNAP or WIC, and those who participated in SNAP alone had 3.28-fold higher odds (95% CI = 1.56, 6.88). Conclusions. Participation in social safety net programs such as SNAP and WIC during childhood helps to improve food security across the life course. Our findings add evidence regarding the long-term benefits of participation in SNAP and WIC during childhood. (Am J Public Health. 2022;112(10):1498–1506. https://doi.org/10.2105/AJPH.2022.306967 ) 
    more » « less
  2. Abstract Background

    We used an opportunity gap framework to analyze the pathways through which students enter into and depart from science, technology, engineering, and mathematics (STEM) degrees in an R1 higher education institution and to better understand the demographic disparities in STEM degree attainment.

    Results

    We found disparities in 6-year STEM graduation rates on the basis of gender, race/ethnicity, and parental education level. Using mediation analysis, we showed that the gender disparity in STEM degree attainment was explained by disparities in aspiration: a gender disparity in students’ intent to pursue STEM at the beginning of college; women were less likely to graduate with STEM degrees because they were less likely to intend to pursue STEM degrees. However, disparities in STEM degree attainment across race/ethnicities and parental education level were largely explained by disparities in attrition: persons excluded because of their ethnicity or race (PEERs) and first generation students were less likely to graduate with STEM degrees due to fewer academic opportunities provided prior to college (estimated using college entrance exams scores) and more academic challenges during college as captured by first year GPAs.

    Conclusions

    Our results reinforce the idea that patterns of departure from STEM pathways differ among marginalized groups. To promote and retain students in STEM, it is critical that we understand these differing patterns and consider structural efforts to support students at different stages in their education.

     
    more » « less
  3. Abstract STUDY QUESTION

    To what extent is male fatty acid intake associated with fecundability among couples planning pregnancy?

    SUMMARY ANSWER

    We observed weak positive associations of male dietary intakes of total and saturated fatty acids with fecundability; no other fatty acid subtypes were appreciably associated with fecundability.

    WHAT IS KNOWN ALREADY

    Male fatty acid intake has been associated with semen quality in previous studies. However, little is known about the extent to which male fatty acid intake is associated with fecundability among couples attempting spontaneous conception.

    STUDY DESIGN, SIZE, DURATION

    We conducted an internet-based preconception prospective cohort study of 697 couples who enrolled during 2015–2022. During 12 cycles of observation, 53 couples (7.6%) were lost to follow-up.

    PARTICIPANTS/MATERIALS, SETTING, METHODS

    Participants were residents of the USA or Canada, aged 21–45 years, and not using fertility treatment at enrollment. At baseline, male participants completed a food frequency questionnaire from which we estimated intakes of total fat and fatty acid subtypes. We ascertained time to pregnancy using questionnaires completed every 8 weeks by female participants until conception or up to 12 months. We used proportional probabilities regression models to estimate fecundability ratios (FRs) and 95% CIs for the associations of fat intakes with fecundability, adjusting for male and female partner characteristics. We used the multivariate nutrient density method to account for energy intake, allowing for interpretation of results as fat intake replacing carbohydrate intake. We conducted several sensitivity analyses to assess the potential for confounding, selection bias, and reverse causation.

    MAIN RESULTS AND THE ROLE OF CHANCE

    Among 697 couples, we observed 465 pregnancies during 2970 menstrual cycles of follow-up. The cumulative incidence of pregnancy during 12 cycles of follow-up after accounting for censoring was 76%. Intakes of total and saturated fatty acids were weakly, positively associated with fecundability. Fully adjusted FRs for quartiles of total fat intake were 1.32 (95% CI 1.01–1.71), 1.16 (95% CI 0.88–1.51), and 1.43 (95% CI 1.09–1.88) for the second, third, and fourth vs the first quartile, respectively. Fully adjusted FRs for saturated fatty acid intake were 1.21 (95% CI 0.94–1.55), 1.16 (95% CI 0.89–1.51), and 1.23 (95% CI 0.94–1.62) for the second, third, and fourth vs the first quartile, respectively. Intakes of monounsaturated, polyunsaturated, trans-, omega-3, and omega-6 fatty acids were not strongly associated with fecundability. Results were similar after adjustment for the female partner’s intakes of trans- and omega-3 fats.

    LIMITATIONS, REASONS FOR CAUTION

    Dietary intakes estimated from the food frequency questionnaire may be subject to non-differential misclassification, which is expected to bias results toward the null in the extreme categories when exposures are modeled as quartiles. There may be residual confounding by unmeasured dietary, lifestyle, or environmental factors. Sample size was limited, especially in subgroup analyses.

    WIDER IMPLICATIONS OF THE FINDINGS

    Our results do not support a strong causal effect of male fatty acid intakes on fecundability among couples attempting to conceive spontaneously. The weak positive associations we observed between male dietary fat intakes and fecundability may reflect a combination of causal associations, measurement error, chance, and residual confounding.

    STUDY FUNDING/COMPETING INTEREST(S)

    The study was funded by the National Institutes of Health, grant numbers R01HD086742 and R01HD105863. In the last 3 years, PRESTO has received in-kind donations from Swiss Precision Diagnostics (home pregnancy tests) and Kindara.com (fertility app). L.A.W. is a consultant for AbbVie, Inc. M.L.E. is an advisor to Sandstone, Ro, Underdog, Dadi, Hannah, Doveras, and VSeat. The other authors have no competing interests to report.

    TRIAL REGISTRATION NUMBER

    N/A.

     
    more » « less
  4. First-generation (FG) and/or low-income (LI) engineering student populations are of particular interest in engineering education. However, these populations are not defined in a consistent manner across the literature or amongst stakeholders. The intersectional identities of these groups have also not been fully explored in most quantitative-based engineering education research. This research paper aims to answer the following three research questions: (RQ1) How do students’ demographic characteristics and college experiences differ depending on levels of parent educational attainment (which forms the basis of first-generation definitions) and family income? (RQ2) How do ‘first-generation’ and ‘low-income’ definitions impact results comparing to their continuing-generation and higher-income peers? (RQ3) How does considering first-generation and low-income identities through an intersectional lens deepen insight into the experiences of first-generation and low-income groups? Data were drawn from a nationally representative survey of engineering juniors and seniors (n = 6197 from 27 U.S. institutions). Statistical analyses were conducted to evaluate respondent differences in demographics (underrepresented racial/ethnic minority (URM), women, URM women), college experiences (internships/co-ops, having a job, conducting research, and study abroad), and engineering task self-efficacy (ETSE), based on various definitions of ‘first generation’ and ‘low income’ depending on levels of parental educational attainment and self-reported family income. Our results indicate that categorizing a first-generation student as someone whose parents have less than an associate’s degree versus less than a bachelor’s degree may lead to different understandings of their experiences (RQ1). For example, the proportion of URM students is higher among those whose parents have less than an associate’s degree than among their “associate’s degree or more” peers (26% vs 11.9%). However, differences in college experiences are most pronounced among students whose parents have less than a bachelor’s degree compared with their “bachelor’s degree or more” peers: having a job to help pay for college (55.4% vs 47.3%), research with faculty (22.7% vs 35.0%), and study abroad (9.0% vs 17.3%). With respect to differences by income levels, respondents are statistically different across income groups, with fewer URM students as family income level increases. As family income level increases, there are more women in aggregate, but fewer URM women. College experiences are different for the middle income or higher group (internship 48.4% low and lower-middle income vs 59.0% middle income or higher; study abroad 11.2% vs 16.4%; job 58.6% vs 46.8%). Despite these differences in demographic characteristics and college experiences depending on parental educational attainment and family income, our dataset indicates that the definition does not change the statistical significance when comparing between first-generation students and students who were continuing-generation by any definition (RQ2). First-generation and low-income statuses are often used as proxies for one another, and in this dataset, are highly correlated. However, there are unique patterns at the intersection of these two identities. For the purpose of our RQ3 analysis, we define ‘first-generation’ as students whose parents earned less than a bachelor’s degree and ‘low-income’ as low or lower-middle income. In this sample, 68 percent of students were neither FG nor LI while 11 percent were both (FG&LI). On no measure of demographics or college experience is the FG&LI group statistically similar to the advantaged group. Low-income students had the highest participation in working to pay for college, regardless of parental education, while first-generation students had the lower internship participation than low-income students. Furthermore, being FG&LI is associated with lower ETSE compared with all other groups. These results suggest that care is required when applying the labels “first-generation” and/or “low-income” when considering these groups in developing institutional support programs, in engineering education research, and in educational policy. Moreover, by considering first-generation and low-income students with an intersectional lens, we gain deeper insight into engineering student populations that may reveal potential opportunities and barriers to educational resources and experiences that are an important part of preparation for an engineering career. 
    more » « less
  5. Importance

    Screening with low-dose computed tomography (CT) has been shown to reduce mortality from lung cancer in randomized clinical trials in which the rate of adherence to follow-up recommendations was over 90%; however, adherence to Lung Computed Tomography Screening Reporting & Data System (Lung-RADS) recommendations has been low in practice. Identifying patients who are at risk of being nonadherent to screening recommendations may enable personalized outreach to improve overall screening adherence.

    Objective

    To identify factors associated with patient nonadherence to Lung-RADS recommendations across multiple screening time points.

    Design, Setting, and Participants

    This cohort study was conducted at a single US academic medical center across 10 geographically distributed sites where lung cancer screening is offered. The study enrolled individuals who underwent low-dose CT screening for lung cancer between July 31, 2013, and November 30, 2021.

    Exposures

    Low-dose CT screening for lung cancer.

    Main Outcomes and Measures

    The main outcome was nonadherence to follow-up recommendations for lung cancer screening, defined as failing to complete a recommended or more invasive follow-up examination (ie, diagnostic dose CT, positron emission tomography–CT, or tissue sampling vs low-dose CT) within 15 months (Lung-RADS score, 1 or 2), 9 months (Lung-RADS score, 3), 5 months (Lung-RADS score, 4A), or 3 months (Lung-RADS score, 4B/X). Multivariable logistic regression was used to identify factors associated with patient nonadherence to baseline Lung-RADS recommendations. A generalized estimating equations model was used to assess whether the pattern of longitudinal Lung-RADS scores was associated with patient nonadherence over time.

    Results

    Among 1979 included patients, 1111 (56.1%) were aged 65 years or older at baseline screening (mean [SD] age, 65.3 [6.6] years), and 1176 (59.4%) were male. The odds of being nonadherent were lower among patients with a baseline Lung-RADS score of 1 or 2 vs 3 (adjusted odds ratio [AOR], 0.35; 95% CI, 0.25-0.50), 4A (AOR, 0.21; 95% CI, 0.13-0.33), or 4B/X, (AOR, 0.10; 95% CI, 0.05-0.19); with a postgraduate vs college degree (AOR, 0.70; 95% CI, 0.53-0.92); with a family history of lung cancer vs no family history (AOR, 0.74; 95% CI, 0.59-0.93); with a high age-adjusted Charlson Comorbidity Index score (≥4) vs a low score (0 or 1) (AOR, 0.67; 95% CI, 0.46-0.98); in the high vs low income category (AOR, 0.79; 95% CI, 0.65-0.98); and referred by physicians from pulmonary or thoracic-related departments vs another department (AOR, 0.56; 95% CI, 0.44-0.73). Among 830 eligible patients who had completed at least 2 screening examinations, the adjusted odds of being nonadherent to Lung-RADS recommendations at the following screening were increased in patients with consecutive Lung-RADS scores of 1 to 2 (AOR, 1.38; 95% CI, 1.12-1.69).

    Conclusions and Relevance

    In this retrospective cohort study, patients with consecutive negative lung cancer screening results were more likely to be nonadherent with follow-up recommendations. These individuals are potential candidates for tailored outreach to improve adherence to recommended annual lung cancer screening.

     
    more » « less