Results will be presented from a 5-year NSF S-STEM scholarship program for academically talented women in engineering with financial need. Elizabethtown College’s Engineering Practices with Impact Cohort (EPIC) Scholarship program was launched with an NSF S-STEM grant awarded in 2013. The program developed a pathway for academically talented and financially needy women interested in engineering to successfully enter the STEM workforce. The program targeted three critical stages: 1) recruiting talented women into the ABET-accredited engineering program and forming a cohort of scholars, 2) leveraging and expanding existing high impact practices (including an established matriculation program, living-learning community, collaborative learning model, focused mentoring, and undergraduate research) to support women scholars during their college experience, and 3) mentoring scholars as they transitioned to the STEM workforce or graduate programs. The goals of the scholarship program were to increase the number and percent of women entering engineering at our institution and to increase the graduation/employment rate of EPIC scholars beyond that of current engineering students and beyond that of national levels for women engineers. At the end of this grant, we have roughly doubled the number of women (22.7%) and underrepresented minority students (14%) in the engineering program. This is comparable to the 2016 national average of 20.9% women and 20.6% underrepresented minority bachelor's graduates in engineering. We have also remained at a consistently high level of enrollment and retention of low-income (18.6% Pell-eligible) and first-generation college students (61%). 83% of the scholars have been retained in the engineering program or have graduated with an engineering degree, which is above the institutional and national average. The remaining scholars transferred to another major but have been retained at the institution. All of the scholars participated in a living-learning community, tutoring, focused mentoring, and a women engineers club. Almost all participated in a pre-matriculation program. 17% of the scholars additionally had an undergraduate research experience and 28% studied abroad. 100% of the scholars had engineering workforce jobs or graduate school acceptances at the time of graduation. This program successfully increased the population of underrepresented minority, low-income, and first-generation women entering the engineering workforce.
more »
« less
Incentivizing STEM participation: Evidence from the SMART Grant Program
The U.S. National Science and Mathematics Access to Retain Talent (SMART) Grant program provided up to $8000 to high-achieving, low-income undergraduates majoring in STEM fields. We evaluate the effects of this financial incentive on college graduates' major fields and subsequent STEM workforce retention using nationally-representative survey data and a difference-in-differences quasi-experimental approach. The SMART Grant program significantly increased the probability that first-generation college graduates majored in STEM, by about 7 percentage points. However, this increase is almost entirely offset by affected STEM graduates' significantly lower STEM workforce retention. These program effects also appear to be concentrated among students whose parents had some college experience rather than those who were first in their families to attend college.
more »
« less
- PAR ID:
- 10348461
- Date Published:
- Journal Name:
- Southern Economic Journal
- ISSN:
- 0038-4038
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
This research paper examines retaining traditionally underrepresented minorities (URM) in STEM fields. The retention of URM students in STEM fields is a current area of focus for engineering education research. After an extensive literature review and examination of best practices in retaining the targeted group, a cohort-based, professional development program with a summer bridge component was developed at a large land grant institution in the Mid-Atlantic region. One programmatic goal was to increase retention of underrepresented students in the engineering college which, ultimately, is expected to increase diversity in the engineering workforce. The program has a strong focus on cohort building, teamwork, mentorship, and developing an engineering identity. Students participate in a week-long summer bridge component prior to the start of their first semester. During their first year, students take a class as a cohort each semester, participate in an industrial site visit, and interact with faculty mentors. Since 2016 the program has been funded by a National Science Foundation S-STEM grant, which provides scholarships to eligible program participants. Scholarships start at $4,500 during year one, and are renewable for up to five years, with an incremental increase of $1000 annually for years one through four. Even with the professional development program providing support and scholarships alleviating the financial burden of higher education, students are still leaving engineering. The 2016-2017 cohort consisted of five scholarship recipients, of which three remained in engineering as of fall 2018, the beginning of their third year. The 2017-2018 cohort consisted of seven scholarship recipients, of which five remained in engineering as of fall 2018, their second year. While the numbers of this scholarship group are small, their retention rate is alarmingly below the engineering college retention rate. Why? This paper presents the results of additional investigations of the overall program cohorts (not only the scholarship recipients) and their non-program peers with the aim of determining predictors of retention in the targeted demographic. Student responses to three survey instruments: GRIT, MSLQ, and LAESE were analyzed to determine why students were leaving engineering, even though the program they participated in was strongly rooted in retention based literature. Student responses on program exit surveys were also analyzed to determine non-programmatic elements that may cause students to leave engineering. Results of this research is presented along with “lessons learned” and suggested actions to increase retention among the targeted population.more » « less
-
Wesley College secured a five-year National Science Foundation (NSF) S-STEM (scholarships in science, technology, engineering, and mathematics) grant (1355554) to provide affordability and access to its robust STEM programs. With these funds, the college initiated a freshman to senior level, mixed-cohort, Cannon Scholar (CS) learning community (LC). Around the proven high-impact practice of multi-tiered mentoring, this LC is designed for greater commitment to participating STEM undergraduates. It truly is a collaborative effort between faculty and administrators. For Scholars interested in mentored research, existing NSF Experimental Program to Stimulate Competitive Research, and National Institutes of Health, National Institute of General Medical Sciences-IDeA Networks of Biomedical Research Excellence funding, complement the innovation and cross-disciplinary collaborations in the CS programming. This enriches and further supports the CS LC. Throughout the 2014-2016 program duration, there were 66 unique scholarship recipients and 82% participated in directed research. Fifty-nine percent were from underrepresented minority populations and 65% were female. Ninety-five percent of these Scholars were retained and 100% of the graduates (n = 21) entered STEM fields. Analyses controlled for population similarity proves that with an intensive focus on academic support, high-impact uplifting practices were implemented through a framework of comprehensive student engagement activities. Such strategic interactions resulted in higher overall GPAs and significantly improved Scholar retention rates.more » « less
-
null (Ed.)In summer 2020, faculty in the College of Engineering at Texas A&M University-Kingsville developed and implemented a virtual Summer Bridge Program (SBP) as part of an NSF Improving Undergraduate STEM Education (IUSE) grant. Texas A&M University-Kingsville is a Hispanic-Serving Institution (HSI). The primary objective of the SBP was to improve academic motivation, retention, and success of underclassmen and transfer students in the college by implementing a co-curricular summer program that included several high-impact enrichment activities. The aim of this work is to share the approach developed for this SBP to obtain feedback from other undergraduate engineering education experts. Many universities have identified bridging programs for STEM students as a means of ensuring greater success and retention of freshman and sophomores majoring in STEM fields [1,2,3], and this was one impetus for the SBP.more » « less
-
Consistent with national trends, only about ½ of students who intend to major in STEM disciplines at Maryville College (MC) complete bachelor’s degrees in these fields. The Scots Science Scholars (S3) program was funded through the National Science Foundation’s STEM Talent Extension Program to increase the number of students graduating with STEM degrees from MC. The S3 program enrolls college freshmen who have an interest in STEM majors and math ACT scores between 21 and 27, with emphasis on students from groups underrepresented in STEM and first-generation college students. The program consists of a summer bridge, a living-learning community, early engagement in STEM research, a seminar series that exposes students to STEM careers and research fields, academic support through a first-year seminar class, peer tutoring, and time-management counseling. The program has enrolled 6 cohorts of students (n = 97) since 2013, (54% female, 22% underrepresented minorities and 35% first-generation college students). From 2013-2017, S3 compared favorably to the general college population: 96% of all S3 completed the first year of college, 69% declared STEM majors, and 85% returned to the college for a second year (compared to 71%, p < 0.001). Overall, S 3 students persist at the college longer than non-S3 students (P<0.01). Compared to a matched control group, S 3 had significantly higher STEM major declaration rates (68% vs. 38%), higher rates of STEM retention through the junior year (41% vs. 20%), and improved overall college persistence (P< 0.01). Students report high levels of satisfaction with the summer program. At the end of the summer program, students report gains in skills and attitudes that are important for success in STEM. They also perform significantly better on math and chemistry assessments after completing the program. College-wide, the number of students enrolled in STEM majors at Maryville has increased by 52% since the inception of S3 , and STEM undergraduate research productivity has increased markedly. Our data suggest the S3 program is an important component of institutional changes that are increasing the STEM population and building a robust and productive STEM culture at a liberal arts college.more » « less
An official website of the United States government

