skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Supernovae producing unbound binaries and triples
ABSTRACT The fraction of stars that are in binaries or triples at the time of stellar death and the fraction of these systems that survive the supernova explosion are crucial constraints for evolution models and predictions for gravitational wave source populations. These fractions are also subject to direct observational determination. Here, we search 10 supernova remnants containing compact objects with proper motions for unbound binaries or triples using Gaia EDR3 and new statistical methods and tests for false positives. We confirm the one known example of an unbound binary, HD 37424 in G180.0−01.7, and find no other examples. Combining this with our previous searches for bound and unbound binaries, and assuming no bias in favour of finding interacting binaries, we find that 72.0 per cent (52.2–86.4 per cent, 90 per cent confidence) of supernova producing neutron stars are not binaries at the time of explosion, 13.9 per cent (5.4–27.2 per cent) produce bound binaries, and 12.5 per cent (2.8–31.3 per cent) produce unbound binaries. With a strong bias in favour of finding interacting binaries, the medians shift to 76.0 per cent were not binaries at death, 9.5 per cent leave bound binaries, and 13.2 per cent leave unbound binaries. Of explosions that do not leave binaries, $${\lt}18.9{{\ \rm per\ cent}}$$ can be fully unbound triples. These limits are conservatively for $$M\gt 5\, \mathrm{M}_\odot$$ companions, although the mass limits for some individual systems are significantly stronger. At birth, the progenitor of PSR J0538+2817 was probably a 13–$$19\, \mathrm{M}_\odot$$ star, and at the time of explosion, it was probably a Roche limited, partially stripped star transferring mass to HD 37424 and then producing a Type IIL or IIb supernova.  more » « less
Award ID(s):
1814440
PAR ID:
10348500
Author(s) / Creator(s):
Date Published:
Journal Name:
Monthly Notices of the Royal Astronomical Society
Volume:
507
Issue:
4
ISSN:
0035-8711
Page Range / eLocation ID:
5832 to 5846
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. ABSTRACT A large fraction of massive stars are found in higher order systems where the presence of a tertiary may significantly modify the system’s evolution. In particular, it can lead to increased numbers of compact object binaries and accelerate their mergers with important implications for gravitational wave observations. Using Gaia, we constrain the number of Galactic supernovae that produce unbound triples. We do this by searching 8 supernova remnants for stars with consistent Gaia parallaxes and paths intersecting near the centre of the supernova remnant at a time consistent with the age of the remnant. We find no candidates for unbound triple systems. Combined with prior work, less than 11.4 per cent of supernovae leave behind unbound triples at a 90 per cent confidence limit. The absence of such systems limits their role in the evolution of massive stars and the formation of merging compact objects. 
    more » « less
  2. ABSTRACT With Gaia parallaxes, it is possible to study the stellar populations associated with individual Galactic supernova remnants (SNRs) to estimate the mass of the exploding star. Here, we analyse the luminous stars near the Vela pulsar and SNR to find that its progenitor was probably ($$\mathrel {\raise.3ex\rm{\gt }\lower0.6ex\rm{\sim }}90\rm \,per\,cent$$) low mass (8.1–$$10.3\, {\rm M}_\odot$$). The presence of the O star γ2 Vel a little over 100 pc from Vela is the primary ambiguity, as including it in the analysis volume significantly increases the probability (to 5 per cent) of higher mass ($$\gt 20\, {\rm M}_\odot$$) progenitors. However, to be a high-mass star associated with γ2 Vel’s star cluster at birth, the progenitor would have to be a runaway star from an unbound binary with an unusually high velocity. The primary impediment to analysing large numbers of Galactic SNRs in this manner is the lack of accurate distances. This can likely be solved by searching for absorption lines from the SNR in stars as a function of distance, a method which yielded a distance to Vela in agreement with the direct pulsar parallax. If Vela was a $$10\, {\rm M}_\odot$$ supernova in an external galaxy, the 50-pc search region used in extragalactic studies would contain only $$\simeq 10\rm \,per\,cent$$ of the stars formed in a 50-pc region around the progenitor at birth and $$\simeq 90\rm \,per\,cent$$ of the stars in the search region would have been born elsewhere. 
    more » « less
  3. ABSTRACT We investigate the progenitor of the Crab supernova by examining the remnant’s surrounding stellar population. The Crab is interesting because of the apparently low energy and mass of the supernova remnant. We also know it was not a binary at death and that the explosion formed a neutron star. Using Gaia EDR3 parallaxes and photometry, we analyse stars inside a cylinder with a projected radius of 100 pc and spanning distances from $$\sim 1600$$ to 2300 pc set by the $$2\sigma$$ uncertainties in the Crab’s parallax. We also individually model the most luminous stars local to the Crab. The two most luminous stars are blue, roughly main sequence stars with masses of $$\sim 11\, {\rm M}_{\odot }$$. We estimate the stellar population’s age distribution using solar metallicity PARSEC isochrones. The estimated age distribution of the 205 $$M_{\mathrm{ G}} < 0$$ stars modestly favour lower mass stars, consistent with an AGB star or a lower mass binary merger as the progenitor, but statistically we cannot rule out higher masses. This may be driven by contamination due to the $$\sim 700$$ pc span of the cylinder in distance. 
    more » « less
  4. ABSTRACT Strong dynamical interactions among stars and compact objects are expected in a variety of astrophysical settings, such as star clusters and the disks of active galactic nuclei. Via a suite of three-dimensional hydrodynamics simulations using the moving-mesh code arepo, we investigate the formation of transient phenomena and their properties in close encounters between an $$2\, {\rm M}_{\odot }$$ or $$20\, {\rm M}_{\odot }$$ equal-mass circular binary star and single $$20\, {\rm M}_{\odot }$$ black hole (BH). Stars can be disrupted by the BH during dynamical interactions, naturally producing electromagnetic transient phenomena. Encounters with impact parameters smaller than the semimajor axis of the initial binary frequently lead to a variety of transients whose electromagnetic signatures are qualitatively different from those of ordinary disruption events involving just two bodies. These include the simultaneous or successive disruptions of both stars and one full disruption of one star accompanied by successive partial disruptions of the other star. On the contrary, when the impact parameter is larger than the semimajor axis of the initial binary, the binary is either simply tidally perturbed or dissociated into bound and unbound single stars (‘micro-Hills’ mechanism). The dissociation of $$20\, {\rm M}_{\odot }$$ binaries can produce a runaway star and an active BH moving away from one another. Also, the binary dissociation can either produce an interacting binary with the BH, or a non-interacting, hard binary; both could be candidates of BH high- and low-mass X-ray binaries. Hence, our simulations especially confirm that strong encounters can lead to the formation of the (generally difficult to form) BH low-mass X-ray binaries. 
    more » « less
  5. ABSTRACT Milky Way globular clusters (GCs) display chemical enrichment in a phenomenon called multiple stellar populations (MSPs). While the enrichment mechanism is not fully understood, there is a correlation between a cluster’s mass and the fraction of enriched stars found therein. However, present-day GC masses are often smaller than their masses at the time of formation due to dynamical mass-loss. In this work, we explore the relationship between mass and MSPs using the stellar stream 300S. We present the chemical abundances of eight red giant branch member stars in 300S with high-resolution spectroscopy from Magellan/MIKE. We identify one enriched star characteristic of MSPs and no detectable metallicity dispersion, confirming that the progenitor of 300S was a GC. The fraction of enriched stars (12.5 per cent) observed in our 300S stars is less than the 50 per cent of stars found enriched in Milky Way GCs of comparable present-day mass (∼104.5 $$\mathrm{\, {\rm M}_{\odot }}$$). We calculate the mass of 300S’s progenitor and compare it to the initial masses of intact GCs, finding that 300S aligns well with the trend between the system mass at formation and enrichment. 300S’s progenitor may straddle the critical mass threshold for the formation of MSPs and can therefore serve as a benchmark for the stellar enrichment process. Additionally, we identify a CH star, with high abundances of s-process elements, probably accreted from a binary companion. The rarity of such binaries in intact GCs may imply stellar streams permit the survival of binaries that would otherwise be disrupted. 
    more » « less