skip to main content


Title: The effects of gender, race, and intersectional identities on the engineering professional identity of upper-year engineering students
Award ID(s):
1830761
PAR ID:
10348554
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
ASEE Annual Conference proceedings
ISSN:
1524-4644
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. While reducing anthropogenic greenhouse gas emissions remains the most essential element of any strategy to manage climate change risk, it is also in principle possible to directly cool the climate by reflecting some sunlight back to space. Such climate engineering approaches include adding aerosols to the stratosphere and marine cloud brightening. Assessing whether these ideas could reduce risk requires a broad, multidisciplinary research effort spanning climate science, social sciences, and governance. However, if such strategies were ever used, the effort would also constitute one of the most critical engineering design and control challenges ever considered: making real-time decisions for a highly uncertain and nonlinear dynamic system with many input variables, many measurements, and a vast number of internal degrees of freedom, the dynamics of which span a wide range of timescales. Here, we review the engineering design aspects of climate engineering, discussing both progress to date and remaining challenges that will need to be addressed. 
    more » « less
  2. https://peer.asee.org/28248 The research draws from a larger study conducted at four large public universities examining the non-normative attitudes of first-year engineering students and how these attitudes might affect their collegiate experience and the development of their engineering identity. Within the survey demographics section, students were asked to report their gender with as many options as they felt appropriate to describe themselves. Students were given the option to respond “male,” “female,” “cisgender,” “transgender,” “agender,” “genderqueer,” and/or “a gender not listed.” Of the students surveyed, 2,697 identified themselves as male or female. Of this population, 55 students additionally identified themselves as cisgender. A Welch’s t-test revealed that factors relating to engineering identity were significantly different between cisgender students who self-identified and those who did not. Self-identified cisgender students possessed higher scores on factors measuring components of engineering identity, such as Physics Performance/Competence beliefs (p = 0.001, Cohen’s d = 0.412). These students were also rated as higher on Openness from the “Big 5” personality measures (p = 0.006, Cohen’s d = 0.403), and scored significantly lower on Conscientiousness from the “Big 5” personality measures (p = 0.028, Cohen’s d = 0.343). These data highlight the differences between cisgender identified and non-identified students. Higher Openness results indicate that cisgender students are significantly more attentive of individuals’ inner feelings and may seek out more variety in their experiences than their non-cis-identified peers. Lower Conscientiousness scores reveal that cisgender students, on average, are less likely to conform to traditional cultural norms. Additionally, stronger scores relating to engineering identity indicate that cisgender-identified students feel that they belong in engineering. Together, these findings suggest that cisgender students possess traits and attitudes that could position them as ambassadors to or changemakers within engineering culture. Future research will work to understand these differences qualitatively to inform ways in which these individuals may serve as allies or “bridgers” for individuals within engineering who do not conform to gender and sexual orientation binaries. 
    more » « less
  3. null (Ed.)
    Products from chemical engineering are essential for human well-being, but they also contribute to the degradation of ecosystem goods and services that are essential for sustaining all human activities. To contribute to sustainability, chemical engineering needs to address this paradox by developing chemical products and processes that meet the needs of present and future generations. Unintended harm of chemical engineering has usually appeared outside the discipline's traditional system boundary due to shifting of impacts across space, time, flows, or disciplines, and exceeding nature's capacity to supply goods and services. Being a subdiscipline of chemical engineering, process systems engineering (PSE) is best suited for ensuring that chemical engineering makes net positive contributions to sustainable development. This article reviews the role of PSE in the quest toward a sustainable chemical engineering. It focuses on advances in metrics, process design, product design, and process dynamics and control toward sustainability. Efforts toward contributing to this quest have already expanded the boundary of PSE to consider economic, environmental, and societal aspects of processes, products, and their life cycles. Future efforts need to account for the role of ecosystems in supporting industrial activities, and the effects of human behavior and markets on the environmental impacts of chemical products. Close interaction is needed between the reductionism of chemical engineering science and the holism of process systems engineering, along with a shift in the engineering paradigm from wanting to dominate nature to learning from it and respecting its limits. 
    more » « less