skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: The Engineering of Climate Engineering
While reducing anthropogenic greenhouse gas emissions remains the most essential element of any strategy to manage climate change risk, it is also in principle possible to directly cool the climate by reflecting some sunlight back to space. Such climate engineering approaches include adding aerosols to the stratosphere and marine cloud brightening. Assessing whether these ideas could reduce risk requires a broad, multidisciplinary research effort spanning climate science, social sciences, and governance. However, if such strategies were ever used, the effort would also constitute one of the most critical engineering design and control challenges ever considered: making real-time decisions for a highly uncertain and nonlinear dynamic system with many input variables, many measurements, and a vast number of internal degrees of freedom, the dynamics of which span a wide range of timescales. Here, we review the engineering design aspects of climate engineering, discussing both progress to date and remaining challenges that will need to be addressed.  more » « less
Award ID(s):
1818759
PAR ID:
10139970
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Annual Review of Control, Robotics, and Autonomous Systems
Volume:
2
Issue:
1
ISSN:
2573-5144
Page Range / eLocation ID:
445 to 467
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Engineering is fundamentally about design, yet many undergraduate programs offer limited opportunities for students to learn to design. This design case reports on a grant-funded effort to revolutionize how chemical engineering is taught. Prior to this effort, our chemical engineering program was like many, offering core courses primarily taught through lectures and problem sets. While some faculty referenced examples, students had few opportunities to construct and apply what they were learning. Spearheaded by a team that included the department chair, a learning scientist, a teaching-intensive faculty member, and faculty heavily engaged with the undergraduate program, we developed and implemented design challenges in core chemical engineering courses. We began by co-designing with students and faculty, initially focusing on the first two chemical engineering courses students take. We then developed templates and strategies that supported other faculty-student teams to expand the approach into more courses. Across seven years of data collection and iterative refinements, we developed a framework that offers guidance as we continue to support new faculty in threading design challenges through core content-focused courses. We share insights from our process that supported us in navigating through challenging questions and concerns. 
    more » « less
  2. The data engineering and data science community has embraced the idea of using Python and R dataframes for regular applications. Driven by the big data revolution and artificial intelligence, these frameworks are now ever more important in order to process terabytes of data. They can easily exceed the capabilities of a single machine but also demand significant developer time and effort due to their convenience and ability to manipulate data with high-level abstractions that can be optimized. Therefore it is essential to design scalable dataframe solutions. There have been multiple efforts to be integrated into the most efficient fashion to tackle this problem, the most notable being the dataframe systems developed using distributed computing environments such as Dask and Ray. Even though Dask and Ray's distributed computing features look very promising, we perceive that the Dask Dataframes and Ray Datasets still have room for optimization In this paper, we present CylonFlow, an alternative distributed dataframe execution methodology that enables state-of-the-art performance and scalability on the same Dask and Ray infrastructure (superchargingthem!). To achieve this, we integrate ahigh-performance dataframesystem Cylon, which was originally based on an entirely different execution paradigm, into Dask and Ray. Our experiments show that on a pipeline of dataframe operators, CylonFlow achieves 30 × more distributed performance than Dask Dataframes. Interestingly, it also enables superior sequential performance due to leveraging the native C++ execution of Cylon. We believe the performance of Cylon in conjunction with CylonFlow extends beyond the data engineering domain and can be used to consolidate high-performance computing and distributed computing ecosystems. 
    more » « less
  3. This full paper introduces a larger project exploring how the development of time management and metacognition skills may positively impact the agency of first-year engineering students and their success, which we acknowledge can be measure in traditional ways (e.g. persistence, achievement) and non-traditional ways (e.g. well-being). The ever-evolving characteristics of college students demand continuous actualization of educational strategies. It is known that most college students nowadays belong to Generation Z, who are technology-natives, ethnically diverse and are on track to become the most educated generation. However, they also struggle the most with their mental health, which is influenced by contemporary challenges such as mass shootings, money and work stressors, the political climate, and stresses and losses derived from learning within a pandemic. If we honor our commitment to support their success, we need to consider these strengths and weaknesses. As well as considering the critical role of well-being in their success. As part of the project, we collected baseline measures of the constructs of interest in a first-year engineering course at a University in the U.S. East, using established and validated instruments. The measures took place before and after students were provided with formal content about metacognition and time management within the Fall 2024 semester. Paired t-tests comparisons were conducted to evaluate gains in metacognitive and time management skills as well as to explore changes in well-being. Interpretations and implications of our results in the first-year engineering experience are offered. 
    more » « less
  4. The Engineering Design in Scientific Inquiry (EDISIn) Project addresses the engineering preparation of secondary science teachers by embedding engineering design into a science course for single-subject STEM education majors (future secondary teachers), and developing a sequence of lesson plans and annotated video for faculty who seek to embed engineering design in their science courses. While undergraduate laboratories are rich with designed experimental apparatus, it is rare that students themselves play a role in designing and producing artifacts in the service of scientific inquiry. Our expectation is that (1) existing science courses offer opportunities for students to engage meaningfully with engineering practices, by solving design challenges that emerge in the construction of scientific ideas; and (2) doing so can capitalize on existing curricula that science education has developed, facilitating the adoption of engineering design into preservice teacher education. As part of NSF’s Improving Undergraduate STEM Education (IUSE) funding program, this proposal is part of a broader effort to transform undergraduate science education, preparing students to be innovators and leaders in STEM. 
    more » « less
  5. ABSTRACT Engineering has emerged as a promising context for STEM integration in K‐12 schools. In the previous decade, the field has seen an increase in curricular resources and pedagogical approaches that invite students to utilize mathematics and science as they engage in engineering practices. This Innovation to Practice paper highlights one effort to meaningfully integrate mathematics and science through engineering in middle school classrooms. The STEM‐ID engineering course sequence consists of three 18‐week middle school engineering courses. Each of the 6th, 7th, and 8th grade courses integrate science and math with engineering design, enabling students to explore and practice foundational math and science skills in a low‐risk, non‐high‐stakes‐tested environment. This Innovation to Practice paper provides illustrative examples of STEM‐integration through the STEM‐ID curricula, focusing on four key areas: data analysis, measurement, experimental design, and force and motion concepts. Drawing on our project's implementation data, we highlight illustrative examples of STEM integration, in practice, and lessons learned by educators and researchers involved in the project. 
    more » « less