skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Quantum optics meets black hole thermodynamics via conformal quantum mechanics: II. Thermodynamics of acceleration radiation
Award ID(s):
2013771
PAR ID:
10348562
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Physical Review D
Volume:
104
Issue:
8
ISSN:
2470-0010
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Quantum complexity measures the difficulty of realizing a quantum process, such as preparing a state or implementing a unitary. We present an approach to quantifying the thermodynamic resources required to implement a process if the process’s complexity is restricted. We focus on the prototypical task of information erasure, or Landauer erasure, wherein an n -qubit memory is reset to the all-zero state. We show that the minimum thermodynamic work required to reset an arbitrary state in our model, via a complexity-constrained process, is quantified by the state’s . The complexity entropy therefore quantifies a trade-off between the work cost and complexity cost of resetting a state. If the qubits have a nontrivial (but product) Hamiltonian, the optimal work cost is determined by the . The complexity entropy quantifies the amount of randomness a system appears to have to a computationally limited observer. Similarly, the complexity relative entropy quantifies such an observer’s ability to distinguish two states. We prove elementary properties of the complexity (relative) entropy. In a random circuit—a simple model for quantum chaotic dynamics—the complexity entropy transitions from zero to its maximal value around the time corresponding to the observer’s computational-power limit. Also, we identify information-theoretic applications of the complexity entropy. The complexity entropy quantifies the resources required for data compression if the compression algorithm must use a restricted number of gates. We further introduce a , which arises naturally in a complexity-constrained variant of information-theoretic decoupling. Assuming that this entropy obeys a conjectured chain rule, we show that the entropy bounds the number of qubits that one can decouple from a reference system, as judged by a computationally bounded referee. Overall, our framework extends the resource-theoretic approach to thermodynamics to integrate a notion of , as quantified by . Published by the American Physical Society2025 
    more » « less