Energetic electron precipitation (EEP) during substorms significantly affects ionospheric chemistry and lower-ionosphere (<100 km) conductance. Two mechanisms have been proposed to explain what causes EEP: whistler-mode wave scattering, which dominates at low latitudes (mapping to the inner magnetosphere), and magnetic field-line curvature scattering, which dominates poleward. In this case study, we analyzed a substorm event demonstrating the dominance of curvature scattering. Using ELFIN, POES, and THEMIS observations, we show that 50–1,000 keV EEP was driven by curvature scattering, initiated by an intensification and subsequent earthward motion of the magnetotail current sheet. Using a combination of Swarm, total electron content, and ELFIN measurements, we directly show the location of EEP with energies up to ∼1 MeV, which extended from the plasmapause to the near-Earth plasma sheet (PS). The impact of this strong substorm EEP on ionospheric ionization is also estimated and compared with precipitation of PS (<30 keV) electrons.
more »
« less
Tens to hundreds of keV electron precipitation driven by kinetic Alfvén waves during an electron injection
Electron injections are critical processes associated with magnetospheric substorms, which deposit significant electron energy into the ionosphere. Although wave scattering of <10 keV electrons during injections has been well studied, the link between magnetotail electron injections and energetic (≥100 keV) electron precipitation remains elusive. Using conjugate observations between the ELFIN and Magnetospheric Multiscale (MMS) missions, we present evidence of tens to hundreds of keV electron precipitation to the ionosphere potentially driven by kinetic Alfvén waves (KAWs) associated with magnetotail electron injections and magnetic field gradients. Test particle simulations adapted to observations show that dipolarization-front magnetic field gradients and associated ∇B drifts allow Doppler-shifted Landau resonances between the injected electrons and KAWs, producing electron spatial scattering across the front which results in pitch-angle decreases and subsequent precipitation. Test particle results show that such KAW-driven precipitation can account for ELFIN observations below ∼300 keV.
more »
« less
- Award ID(s):
- 2019914
- PAR ID:
- 10348625
- Date Published:
- Journal Name:
- Journal of geophysical research
- ISSN:
- 0148-0227
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract We investigate the dynamics of relativistic electrons in the Earth's outer radiation belt by analyzing the interplay of several key physical processes: electron losses due to pitch angle scattering from electromagnetic ion cyclotron (EMIC) waves and chorus waves, and electron flux increases from chorus wave‐driven acceleration of 100–300 keV seed electrons injected from the plasma sheet. We examine a weak geomagnetic storm on 17 April 2021, using observations from various spacecraft, including GOES, Van Allen Probes, ERG/ARASE, MMS, ELFIN, and POES. Despite strong EMIC‐ and chorus wave‐driven electron precipitation in the outer radiation belt, trapped 0.1–1.5 MeV electron fluxes actually increased. We use theoretical estimates of electron quasi‐linear diffusion rates by chorus and EMIC waves, based on statistics of their wave power distribution, to examine the role of those waves in the observed relativistic electron flux variations. We find that a significant supply of 100–300 keV electrons by plasma sheet injections together with chorus wave‐driven acceleration can overcome the rate of chorus and EMIC wave‐driven electron losses through pitch angle scattering toward the loss cone, explaining the observed net increase in electron fluxes. Our study emphasizes the importance of simultaneously taking into account resonant wave‐particle interactions and modeled local energy gradients of electron phase space density following injections, to accurately forecast the dynamical evolution of trapped electron fluxes.more » « less
-
Abstract Sub‐auroral polarization streams (SAPS) are one of the most intense manifestations of magnetosphere‐ionosphere coupling. Magnetospheric energy transport to the ionosphere within SAPS is associated with Poynting flux and the precipitation of thermal energy (0.03–30 keV) plasma sheet particles. However, much less is known about the precipitation of high‐energy (≥50 keV) ions and electrons and their contribution to the low‐altitude SAPS physics. This study examines precipitation within one SAPS event using a combination of equatorial THEMIS and low‐altitude DMSP and ELFIN observations, which, jointly, cover from a few eV up to a few MeV energy range. Observed SAPS are embedding the ion isotropy boundary, which includes strong 300–1,000 keV ion precipitation. SAPS are associated with intense precipitation of relativistic electrons (≤3 MeV), well equatorward of the electron isotropy boundary. Such relativistic electron precipitation is likely due to electron scattering by electromagnetic ion cyclotron waves at the equator.more » « less
-
Abstract Energetic electron precipitation from the equatorial magnetosphere into the atmosphere plays an important role in magnetosphere‐ionosphere coupling: precipitating electrons alter ionospheric properties, whereas ionospheric outflows modify equatorial plasma conditions affecting electromagnetic wave generation and energetic electron scattering. However, ionospheric measurements cannot be directly related to wave and energetic electron properties measured by high‐altitude, near‐equatorial spacecraft, due to large mapping uncertainties. We aim to resolve this by projecting low‐altitude measurements of energetic electron precipitation by ELFIN CubeSats onto total electron content (TEC) maps serving as a proxy for ionospheric density structures. We examine three types of precipitation on the nightside: precipitation of <200 keV electrons in the plasma sheet, bursty precipitation of <500 keV electrons by whistler‐mode waves, and relativistic (>500 keV) electron precipitation by EMIC waves. All three types of precipitation show distinct features in TEC horizontal gradients, and we discuss possible implications of these features.more » « less
-
Abstract The rapidly expanding fleet of low‐altitude CubeSats equipped with energetic particle detectors brings new opportunities for monitoring the dynamics of the radiation belt and near‐Earth plasma sheet. Despite their small sizes, CubeSats can carry state‐of‐the‐art instruments that provide electron flux measurements with finer energy resolution and broader energy coverage, compared to conventional missions such as POES satellites. The recently launched CIRBE CubeSat measures 250–6,000 keV electrons with extremely high energy resolution, however, CIRBE typically only measures locally‐trapped electrons and cannot directly measure the precipitating electrons. This work aims to develop a technique for identifying indications of nightside precipitation using the locally‐trapped electron measurements by the CIRBE CubeSat. This study focuses on two main types of drivers for nightside precipitation: electron scattering by the curvature of magnetic field lines in the magnetotail current sheet and electron scattering by resonance with electromagnetic ion cyclotron (EMIC) waves. Using energy and pitch‐angle resolved electron fluxes from the low‐altitude ELFIN CubeSat, we reveal the features that distinguish between these two precipitation mechanisms based solely on locally‐trapped flux measurements. Then we present measurements from four CIRBE orbits and demonstrate the applicability of the proposed technique to the investigation of nightside precipitation using CIRBE observations, enabling separation between precipitation induced by curvature scattering and EMIC waves in nearby regions. Our study underscores the feasibility of employing high‐energy‐resolution CIRBE measurements for detecting nightside precipitation of relativistic electrons. Additionally, we briefly discuss outstanding scientific questions about these precipitation patterns that could be addressed with CIRBE measurements.more » « less
An official website of the United States government

