skip to main content

Search for: All records

Award ID contains: 2019914

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Energetic electron precipitation from Earth’s outer radiation belt heats the upper atmosphere and alters its chemical properties. The precipitating flux intensity, typically modelled using inputs from high-altitude, equatorial spacecraft, dictates the radiation belt’s energy contribution to the atmosphere and the strength of space-atmosphere coupling. The classical quasi-linear theory of electron precipitation through moderately fast diffusive interactions with plasma waves predicts that precipitating electron fluxes cannot exceed fluxes of electrons trapped in the radiation belt, setting an apparent upper limit for electron precipitation. Here we show from low-altitude satellite observations, that ~100 keV electron precipitation rates often exceed this apparent upper limit. We demonstrate that such superfast precipitation is caused by nonlinear electron interactions with intense plasma waves, which have not been previously incorporated in radiation belt models. The high occurrence rate of superfast precipitation suggests that it is important for modelling both radiation belt fluxes and space-atmosphere coupling.

  2. Electron injections are critical processes associated with magnetospheric substorms, which deposit significant electron energy into the ionosphere. Although wave scattering of <10 keV electrons during injections has been well studied, the link between magnetotail electron injections and energetic (≥100 keV) electron precipitation remains elusive. Using conjugate observations between the ELFIN and Magnetospheric Multiscale (MMS) missions, we present evidence of tens to hundreds of keV electron precipitation to the ionosphere potentially driven by kinetic Alfvén waves (KAWs) associated with magnetotail electron injections and magnetic field gradients. Test particle simulations adapted to observations show that dipolarization-front magnetic field gradients and associated ∇B drifts allow Doppler-shifted Landau resonances between the injected electrons and KAWs, producing electron spatial scattering across the front which results in pitch-angle decreases and subsequent precipitation. Test particle results show that such KAW-driven precipitation can account for ELFIN observations below ∼300 keV.
    Free, publicly-accessible full text available August 1, 2023
  3. Free, publicly-accessible full text available June 1, 2023
  4. Free, publicly-accessible full text available May 2, 2023
  5. Free, publicly-accessible full text available April 21, 2023
  6. Free, publicly-accessible full text available March 25, 2023
  7. Free, publicly-accessible full text available March 16, 2023