skip to main content

This content will become publicly available on January 1, 2023

Title: Terrestrial exospheric dayside H-density profile at 3–15 <i>R</i><sub>E</sub> from UVIS/HDAC and TWINS Lyman-<i>α</i> data combined
Abstract. Terrestrial ecliptic dayside observations of the exospheric Lyman-α column intensity between 3–15 Earth radii (RE) by UVIS/HDAC (UVIS – ultraviolet imaging spectrograph; HDAC – hydrogen-deuterium absorptioncell) Lyman-α photometer at CASSINI have been analyzed to derive the neutral exospheric H-density profile at the Earth's ecliptic dayside in this radial range. The data were measured during CASSINI's swing-by maneuver at the Earth on 18 August 1999 and are published by Werner et al. (2004). In this study the dayside HDAC Lyman-α observations published by Werner et al. (2004) are compared to calculated Lyman-α intensities based on the 3D H-density model derived from TWINS (Two Wide-angle Imaging Neutral-atom Spectrometers) Lyman-α observations between 2008–2010 (Zoennchen et al., 2015). It was found that both Lyman-α profiles show a very similar radial dependence in particular between 3–8 RE. Between 3.0–5.5 RE impact distance Lyman-α observations of both TWINS and UVIS/HDAC exist at the ecliptic dayside. In this overlapping region the cross-calibration of the HDAC profile against the calculated TWINS profile was done, assuming that the exosphere there was similar for both due to comparable space weather conditions. As a result of the cross-calibration the conversion factor between counts per second and rayleigh, fc=3.285 counts s−1 R−1, is determined for these HDAC observations. Using this factor more » the radial H-density profile for the Earth's ecliptic dayside was derived from the UVIS/HDAC observations, which constrained the neutral H density there at 10 RE to a value of 35 cm−3. Furthermore, a faster radial H-density decrease was found at distances above 8 RE (≈r-3) compared to the lower distances of 3–7 RE (≈r-2.37). This increased loss of neutral H above 8 RE might indicate a higher rate of H ionization in the vicinity of the magnetopause at 9–11 RE (near subsolar point) and beyond, because of increasing charge exchange interactions of exospheric H atoms with solar wind ions outside the magnetosphere. « less
; ; ; ;
Award ID(s):
Publication Date:
Journal Name:
Annales Geophysicae
Page Range or eLocation-ID:
271 to 279
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract. Ship-based time series, some now approaching over 3 decades long, are critical climate records that have dramatically improved our ability to characterize natural and anthropogenic drivers of ocean carbon dioxide (CO2) uptake and biogeochemical processes. Advancements in autonomous marine carbon sensors and technologies over the last 2 decades have led to the expansion of observations at fixed time series sites, thereby improving the capability of characterizing sub-seasonal variability in the ocean. Here, we present a data product of 40 individual autonomous moored surface ocean pCO2 (partial pressure of CO2) time series established between 2004 and 2013, 17 also include autonomous pH measurements. These time series characterize a wide range of surface ocean carbonate conditions in different oceanic (17 sites), coastal (13 sites), and coral reef (10 sites) regimes. A time of trend emergence (ToE) methodology applied to the time series that exhibit well-constrained daily to interannual variability and an estimate of decadal variability indicates that the length of sustained observations necessary to detect statistically significant anthropogenic trends varies by marine environment. The ToE estimates for seawater pCO2 and pH range from 8 to 15 years at the open ocean sites, 16 to 41 years at the coastal sites, and 9 to 22 years atmore »the coral reef sites. Only two open ocean pCO2 time series, Woods Hole Oceanographic Institution Hawaii Ocean Time-series Station (WHOTS) in the subtropical North Pacific and Stratus in the South Pacific gyre, have been deployed longer than the estimated trend detection time and, for these, deseasoned monthly means show estimated anthropogenic trends of 1.9±0.3 and 1.6±0.3 µatm yr−1, respectively. In the future, it is possible that updates to this product will allow for the estimation of anthropogenic trends at more sites; however, the product currently provides a valuable tool in an accessible format for evaluating climatology and natural variability of surface ocean carbonate chemistry in a variety of regions. Data are available at and (Sutton et al., 2018).« less

    Ly α forest decomposed into Voigt profile components allows us to study clustering properties of the intergalactic-medium and its dependence on various physical quantities. Here, we report the first detections of probability excess of low-z (i.e z < 0.48) Ly α absorber triplets over redshift-space scale of r∥ ≤ 8 pMpc (Mpc in physical units) with maximum amplitude of $8.76^{+1.96}_{-1.65}$ at a longitudinal separation of 1–2 pMpc. We measure non-zero three-point correlation ($\zeta = 4.76^{+1.98}_{-1.67}$) only at this scale with reduced three-point correlation Q = $0.95^{+0.39}_{-0.38}$. The measured ζ shows an increasing trend with increasing minimum H i column density (NH i) threshold while Q does not show any NH i dependence. About 88 per cent of the triplets contributing to ζ (at z ≤ 0.2) have nearby galaxies (whose distribution is known to be complete for ∼0.1L* at z < 0.1 and for ∼L* at z ∼ 0.25 within 20 arcsec to the quasar sightlines) within velocity separation of 500 km s−1 and median impact parameter of 405 pkpc. The measured impact parameters are consistent with majority of the identified triplets not originating from individual galaxies but tracing the underlying galaxy distribution. Frequency of occurrence of Broad-Ly α absorbers (b > 40 km s−1) in triplets (∼85 per cent) ismore »factor ∼3 higher than that found among the full sample (∼32 per cent). Using four different cosmological simulations, we quantify the effect of peculiar velocities and feedback and show that most of the observed trends are broadly reproduced. However, ζ at small scales (r∥ < 1 pMpc) and its b-dependence found in simulations are inconsistent with observations. This could either be related to the failure of these simulations to reproduce the observed b and NH i distributions for NH i > 1014 cm−2 self-consistently or to the wide spread of signal-to-noise ratio in the observed data.

    « less
  3. Abstract. This paper presents a new technique to derive thermospheric temperature from space-based disk observations of far ultraviolet airglow. The technique, guided by findings from principal component analysis of synthetic daytime Lyman–Birge–Hopfield (LBH) disk emissions, uses a ratio of the emissions in two spectral channels that together span the LBH (2,0) band to determine the change in band shape with respect to a change in the rotational temperature of N2. The two-channel-ratio approach limits representativeness and measurement error by only requiring measurement of the relative magnitudes between two spectral channels and not radiometrically calibrated intensities, simplifying the forward model from a full radiative transfer model to a vibrational–rotational band model. It is shown that the derived temperature should be interpreted as a column-integrated property as opposed to a temperature at a specified altitude without utilization of a priori information of the thermospheric temperature profile. The two-channel-ratio approach is demonstrated using NASA GOLD Level 1C disk emission data for the period of 2–8 November 2018 during which a moderate geomagnetic storm has occurred. Due to the lack of independent thermospheric temperature observations, the efficacy of the approach is validated through comparisons of the column-integrated temperature derived from GOLD Level 1C data with the GOLD Level 2 temperature productmore »as well as temperatures from first principle and empirical models. The storm-time thermospheric response manifested in the column-integrated temperature is also shown to corroborate well with hemispherically integrated Joule heating rates, ESA SWARM mass density at 460 km, and GOLD Level 2 column O/N2 ratio.« less

    Our understanding of reionization has advanced considerably over the past decade, with several results now demonstrating that the intergalactic medium transitioned from substantially neutral at z = 7 to largely reionized at z = 6. However, little remains known about the sizes of ionized bubbles at z ≳ 7 as well as the galaxy overdensities which drive their growth. Fortunately, rest-ultraviolet (UV) spectroscopic observations offer a pathway towards characterizing these ionized bubbles thanks to the resonant nature of Lyman-alpha photons. In a previous work, we presented Ly α detections from three closely separated Lyman-break galaxies at z ≃ 6.8, suggesting the presence of a large (R > 1 physical Mpc) ionized bubble in the 1.5 deg2 COSMOS field. Here, we present new deep Ly α spectra of 10 UV-bright ($\mathrm{\mathit{ M}}_{\mathrm{UV}}^{} \le -20.4$) z ≃ 6.6–6.9 galaxies in the surrounding area, enabling us to better characterize this potential ionized bubble. We confidently detect (S/N > 7) Ly α emission at z = 6.701–6.882 in nine of ten observed galaxies, revealing that the large-scale volume spanned by these sources (characteristic radius R = 3.2 physical Mpc) traces a strong galaxy overdensity (N/〈N〉 ≳ 3). Our data additionally confirm that the Lymore »α emission of UV-bright galaxies in this volume is significantly enhanced, with 40 per cent (4/10) showing strong Ly α emission (equivalent width >25 Å) compared to the 8–9 per cent found on average at z ∼ 7. The median Ly α equivalent width of our observed galaxies is also ≈2 times that typical at z ∼ 7, consistent with expectations if a very large (R ∼ 3 physical Mpc) ionized bubble is allowing the Ly α photons to cosmologically redshift far into the damping wing before encountering H i.

    « less
  5. ABSTRACT Existing ubiquitously in the Universe with the highest luminosity, the Lyman-α (Lyα) emission line encodes abundant physical information about the gaseous medium it interacts with. Nevertheless, the resonant nature of the Lyα line complicates the radiative transfer (RT) modelling of the line profile. We revisit the problem of deciphering the Lyα emission line with RT modelling. We reveal intrinsic parameter degeneracies in the widely used shell model in the optically thick regime for both static and outflowing cases, which suggest the limitations of the model. We also explore the connection between the more physically realistic multiphase, clumpy model, and the shell model. We find that the parameters of a ‘very clumpy’ slab model and the shell model have the following correspondences: (1) the total column density, the effective temperature, and the average radial clump outflow velocity of the clumpy slab model are equal to the H i column density, effective temperature, and expansion velocity of the shell model, respectively; (2) large intrinsic linewidths are required in the shell model to reproduce the wings of the clumpy slab models; (3) adding another phase of hot interclump medium increases peak separation, and the fitted shell expansion velocity lies between the outflow velocitiesmore »of two phases of gas. Our results provide a viable solution to the major discrepancies associated with Lyα fitting reported in previous literature, and emphasize the importance of utilizing information from additional observations to break the intrinsic degeneracies and interpreting the model parameters in a more physically realistic context.« less