skip to main content


Title: Terrestrial exospheric dayside H-density profile at 3–15 <i>R</i><sub>E</sub> from UVIS/HDAC and TWINS Lyman-<i>α</i> data combined
Abstract. Terrestrial ecliptic dayside observations of the exospheric Lyman-α column intensity between 3–15 Earth radii (RE) by UVIS/HDAC (UVIS – ultraviolet imaging spectrograph; HDAC – hydrogen-deuterium absorptioncell) Lyman-α photometer at CASSINI have been analyzed to derive the neutral exospheric H-density profile at the Earth's ecliptic dayside in this radial range. The data were measured during CASSINI's swing-by maneuver at the Earth on 18 August 1999 and are published by Werner et al. (2004). In this study the dayside HDAC Lyman-α observations published by Werner et al. (2004) are compared to calculated Lyman-α intensities based on the 3D H-density model derived from TWINS (Two Wide-angle Imaging Neutral-atom Spectrometers) Lyman-α observations between 2008–2010 (Zoennchen et al., 2015). It was found that both Lyman-α profiles show a very similar radial dependence in particular between 3–8 RE. Between 3.0–5.5 RE impact distance Lyman-α observations of both TWINS and UVIS/HDAC exist at the ecliptic dayside. In this overlapping region the cross-calibration of the HDAC profile against the calculated TWINS profile was done, assuming that the exosphere there was similar for both due to comparable space weather conditions. As a result of the cross-calibration the conversion factor between counts per second and rayleigh, fc=3.285 counts s−1 R−1, is determined for these HDAC observations. Using this factor the radial H-density profile for the Earth's ecliptic dayside was derived from the UVIS/HDAC observations, which constrained the neutral H density there at 10 RE to a value of 35 cm−3. Furthermore, a faster radial H-density decrease was found at distances above 8 RE (≈r-3) compared to the lower distances of 3–7 RE (≈r-2.37). This increased loss of neutral H above 8 RE might indicate a higher rate of H ionization in the vicinity of the magnetopause at 9–11 RE (near subsolar point) and beyond, because of increasing charge exchange interactions of exospheric H atoms with solar wind ions outside the magnetosphere.  more » « less
Award ID(s):
1928883
NSF-PAR ID:
10348644
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Annales Geophysicae
Volume:
40
Issue:
3
ISSN:
1432-0576
Page Range / eLocation ID:
271 to 279
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract. Ship-based time series, some now approaching over 3 decades long, are critical climate records that have dramatically improved our ability to characterize natural and anthropogenic drivers of ocean carbon dioxide (CO2) uptake and biogeochemical processes. Advancements in autonomous marine carbon sensors and technologies over the last 2 decades have led to the expansion of observations at fixed time series sites, thereby improving the capability of characterizing sub-seasonal variability in the ocean. Here, we present a data product of 40 individual autonomous moored surface ocean pCO2 (partial pressure of CO2) time series established between 2004 and 2013, 17 also include autonomous pH measurements. These time series characterize a wide range of surface ocean carbonate conditions in different oceanic (17 sites), coastal (13 sites), and coral reef (10 sites) regimes. A time of trend emergence (ToE) methodology applied to the time series that exhibit well-constrained daily to interannual variability and an estimate of decadal variability indicates that the length of sustained observations necessary to detect statistically significant anthropogenic trends varies by marine environment. The ToE estimates for seawater pCO2 and pH range from 8 to 15 years at the open ocean sites, 16 to 41 years at the coastal sites, and 9 to 22 years at the coral reef sites. Only two open ocean pCO2 time series, Woods Hole Oceanographic Institution Hawaii Ocean Time-series Station (WHOTS) in the subtropical North Pacific and Stratus in the South Pacific gyre, have been deployed longer than the estimated trend detection time and, for these, deseasoned monthly means show estimated anthropogenic trends of 1.9±0.3 and 1.6±0.3 µatm yr−1, respectively. In the future, it is possible that updates to this product will allow for the estimation of anthropogenic trends at more sites; however, the product currently provides a valuable tool in an accessible format for evaluating climatology and natural variability of surface ocean carbonate chemistry in a variety of regions. Data are available at https://doi.org/10.7289/V5DB8043 and https://www.nodc.noaa.gov/ocads/oceans/Moorings/ndp097.html (Sutton et al., 2018). 
    more » « less
  2. Abstract

    We investigate the exospheric neutral density near the subsolar magnetopause, assumingXgse = 10 REas its typical location, to support the upcoming Solar wind‐Magnetosphere‐Ionosphere Link Explorer that will visualize the Earth's magnetosheath and cusps in soft X‐rays. Neutral hydrogen density is a key parameter that controls soft X‐ray emission and can be inversely extracted from the soft X‐ray observations. We introduce a unique method to estimate the dayside neutral density by using X‐ray Multi‐Mirror Mission (XMM)‐Newton astrophysics X‐ray observations and Open Geospace Global Circulation Model (OpenGGCM) global magnetosphere‐ionosphere magnetohydrodynamics (MHD) model. On 4 May 2003 and 16 October 2001, the XMM‐Newton line of sight traversed the dayside of the Earth's magnetosheath and observed strong near‐Earth soft X‐ray emission. We simulate these two events using the OpenGGCM model. Although the model tends to produce a spatially thicker magnetosheath than measured, modeled magnetosheath plasma fluxes match well with the in situ observations of Cluster and Geotail. We calculate the neutral densities every thousand seconds by comparing the modeled count rates with the XMM‐Newton rates. The densities are averaged at39.9 ± 8.0 and57.6 ± 8.0 cm−3for the 4 May 2003 and 16 October 2001 events, respectively. Since our MHD tends to underestimate neutral densities due to its thicker magnetosheath, the true neutral density is likely to lie within the upper half of these error bars.

     
    more » « less
  3. ABSTRACT

    Ly α forest decomposed into Voigt profile components allows us to study clustering properties of the intergalactic-medium and its dependence on various physical quantities. Here, we report the first detections of probability excess of low-z (i.e z < 0.48) Ly α absorber triplets over redshift-space scale of r∥ ≤ 8 pMpc (Mpc in physical units) with maximum amplitude of $8.76^{+1.96}_{-1.65}$ at a longitudinal separation of 1–2 pMpc. We measure non-zero three-point correlation ($\zeta = 4.76^{+1.98}_{-1.67}$) only at this scale with reduced three-point correlation Q = $0.95^{+0.39}_{-0.38}$. The measured ζ shows an increasing trend with increasing minimum H i column density (NH i) threshold while Q does not show any NH i dependence. About 88 per cent of the triplets contributing to ζ (at z ≤ 0.2) have nearby galaxies (whose distribution is known to be complete for ∼0.1L* at z < 0.1 and for ∼L* at z ∼ 0.25 within 20 arcsec to the quasar sightlines) within velocity separation of 500 km s−1 and median impact parameter of 405 pkpc. The measured impact parameters are consistent with majority of the identified triplets not originating from individual galaxies but tracing the underlying galaxy distribution. Frequency of occurrence of Broad-Ly α absorbers (b > 40 km s−1) in triplets (∼85 per cent) is factor ∼3 higher than that found among the full sample (∼32 per cent). Using four different cosmological simulations, we quantify the effect of peculiar velocities and feedback and show that most of the observed trends are broadly reproduced. However, ζ at small scales (r∥ < 1 pMpc) and its b-dependence found in simulations are inconsistent with observations. This could either be related to the failure of these simulations to reproduce the observed b and NH i distributions for NH i > 1014 cm−2 self-consistently or to the wide spread of signal-to-noise ratio in the observed data.

     
    more » « less
  4. Abstract. The Surface Ocean CO2 Atlas (SOCAT) is a synthesis of quality-controlled fCO2 (fugacity of carbon dioxide) values for the global surface oceans and coastal seas with regular updates. Version 3 of SOCAT has 14.7 million fCO2 values from 3646 data sets covering the years 1957 to 2014. This latest version has an additional 4.6 million fCO2 values relative to version 2 and extends the record from 2011 to 2014. Version 3 also significantly increases the data availability for 2005 to 2013. SOCAT has an average of approximately 1.2 million surface water fCO2 values per year for the years 2006 to 2012. Quality and documentation of the data has improved. A new feature is the data set quality control (QC) flag of E for data from alternative sensors and platforms. The accuracy of surface water fCO2 has been defined for all data set QC flags. Automated range checking has been carried out for all data sets during their upload into SOCAT. The upgrade of the interactive Data Set Viewer (previously known as the Cruise Data Viewer) allows better interrogation of the SOCAT data collection and rapid creation of high-quality figures for scientific presentations. Automated data upload has been launched for version 4 and will enable more frequent SOCAT releases in the future. High-profile scientific applications of SOCAT include quantification of the ocean sink for atmospheric carbon dioxide and its long-term variation, detection of ocean acidification, as well as evaluation of coupled-climate and ocean-only biogeochemical models. Users of SOCAT data products are urged to acknowledge the contribution of data providers, as stated in the SOCAT Fair Data Use Statement. This ESSD (Earth System Science Data) "living data" publication documents the methods and data sets used for the assembly of this new version of the SOCAT data collection and compares these with those used for earlier versions of the data collection (Pfeil et al., 2013; Sabine et al., 2013; Bakker et al., 2014). Individual data set files, included in the synthesis product, can be downloaded here: doi:10.1594/PANGAEA.849770. The gridded products are available here: doi:10.3334/CDIAC/OTG.SOCAT_V3_GRID. 
    more » « less
  5. ABSTRACT

    Our understanding of reionization has advanced considerably over the past decade, with several results now demonstrating that the intergalactic medium transitioned from substantially neutral at z = 7 to largely reionized at z = 6. However, little remains known about the sizes of ionized bubbles at z ≳ 7 as well as the galaxy overdensities which drive their growth. Fortunately, rest-ultraviolet (UV) spectroscopic observations offer a pathway towards characterizing these ionized bubbles thanks to the resonant nature of Lyman-alpha photons. In a previous work, we presented Ly α detections from three closely separated Lyman-break galaxies at z ≃ 6.8, suggesting the presence of a large (R > 1 physical Mpc) ionized bubble in the 1.5 deg2 COSMOS field. Here, we present new deep Ly α spectra of 10 UV-bright ($\mathrm{\mathit{ M}}_{\mathrm{UV}}^{} \le -20.4$) z ≃ 6.6–6.9 galaxies in the surrounding area, enabling us to better characterize this potential ionized bubble. We confidently detect (S/N > 7) Ly α emission at z = 6.701–6.882 in nine of ten observed galaxies, revealing that the large-scale volume spanned by these sources (characteristic radius R = 3.2 physical Mpc) traces a strong galaxy overdensity (N/〈N〉 ≳ 3). Our data additionally confirm that the Ly α emission of UV-bright galaxies in this volume is significantly enhanced, with 40 per cent (4/10) showing strong Ly α emission (equivalent width >25 Å) compared to the 8–9 per cent found on average at z ∼ 7. The median Ly α equivalent width of our observed galaxies is also ≈2 times that typical at z ∼ 7, consistent with expectations if a very large (R ∼ 3 physical Mpc) ionized bubble is allowing the Ly α photons to cosmologically redshift far into the damping wing before encountering H i.

     
    more » « less