skip to main content


Search for: All records

Award ID contains: 1928883

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    The accurate determination of auroral precipitation in global models has remained a daunting and rather inexplicable obstacle. Understanding the calculation and balance of multiple sources that constitute the aurora, and their eventual conversion into ionospheric electrical conductance, is critical for improved prediction of space weather events. In this study, we present a semi‐physical global modeling approach that characterizes contributions by four types of precipitation—monoenergetic, broadband, electron, and ion diffuse—to ionospheric electrodynamics. The model uses a combination of adiabatic kinetic theory and loss parameters derived from historical energy flux patterns to estimate auroral precipitation from magnetohydrodynamic (MHD) quantities. It then converts them into ionospheric conductance that is used to compute the ionospheric feedback to the magnetosphere. The model has been employed to simulate the 5–7 April 2010Galaxy15space weather event. Comparison of auroral fluxes show good agreement with observational data sets like NOAA‐DMSP and OVATION Prime. The study shows a dominant contribution by electron diffuse precipitation, accounting for ∼74% of the auroral energy flux. However, contributions by monoenergetic and broadband sources dominate during times of active upstream solar conditions, providing for up to 61% of the total hemispheric power. The study also finds a greater role played by broadband precipitation in ionospheric electrodynamics which accounts for ∼31% of the Pedersen conductance.

     
    more » « less
  2. Abstract

    The Earth's magnetosheath and cusps emit soft X‐rays due to the charge exchange between highly charged solar wind ions and exospheric hydrogen atoms. The Lunar Environment Heliospheric X‐ray Imager and Solar wind Magnetosphere Ionosphere Link Explorer missions are scheduled to image the Earth's dayside magnetosphere system in soft X‐rays to investigate global‐scale magnetopause reconnection modes under varying solar wind conditions. The exospheric neutral hydrogen density distribution, especially the value of this density at the subsolar magnetopause is of particular interest for understanding X‐ray emissions near this boundary. This paper estimates the exospheric density during solar minimum using the X‐ray Multimirror Mission (XMM) astrophysics observatory. We selected an event on 12 November 2008 from the XMM data archive, which detects soft X‐rays of magnetosheath origin while solar wind and interplanetary magnetic field conditions are relatively constant. During the event the location of the magnetopause was measured in situ by the THEMIS mission, thus the location of the solar wind ions responsible for the magnetosheath emission is well constrained by observation. We estimated the exospheric density using the Open Geospace Global Circulation Model (OpenGGCM) and a spherically symmetric exosphere model. The ratio of the magnetosheath plasma flux between the OpenGGCM model and the THEMIS, was nearly 1, which means the magnetohydrodynamic model reasonably reproduces the magnetosheath plasma conditions. The OpenGGCM magnetosheath parameters were used to deconvolve soft X‐rays of exospheric origin from the XMM signal. The lower‐limit of the exospheric density of this solar minimum event is 36.8 ± 11.7 cm−3at 10 REsubsolar location.

     
    more » « less
  3. Abstract

    One of the most significant observations associated with a sharp enhancement in solar wind dynamic pressure,, is the poleward expansion of the auroral oval and the closing of the polar cap. The polar cap shrinking over a wide range of magnetic local times (MLTs), in connection with an observed increase in ionospheric convection and the transpolar potential, led to the conclusion that the nightside reconnection rate is significantly enhanced after a pressure front impact. However, this enhanced tail reconnection has never been directly measured. We demonstrate the effect of a solar wind dynamic pressure front on the polar cap closure, and for the first time, measure the enhanced reconnection rate in the magnetotail, for a case occurring during southward background Interplanetary Magnetic Field (IMF) conditions. We use Polar Ultra‐Violet Imager (UVI) measurements to detect the location of the open‐closed field line boundary, and combine them with Assimilative Mapping of Ionospheric Electrodynamics (AMIE) potentials to calculate the ionospheric electric field along the polar cap boundary, and thus evaluate the variation of the dayside/nightside reconnection rates. We find a strong response of the polar cap boundary at all available MLTs, exhibiting a significant reduction of the open flux content. We also observe an immediate response of the dayside reconnection rate, plus a phased response, delayed by ∼15–20 min, of the nightside reconnection rate. Finally, we provide comparison of the observations with the results of the Open Geospace General Circulation Model (OpenGGCM), elucidating significant agreements and disagreements.

     
    more » « less
  4. Abstract

    We report the concurrent observations of F‐region plasma changes and field‐aligned currents (FACs) above isolated proton auroras (IPAs) associated with electromagnetic ion cyclotron Pc1 waves. Key events on March 19, 2020 and September 12, 2018 show that ground magnetometers and all‐sky imagers detected concurrent Pc1 wave and IPA, during which NOAA POES observed precipitating energetic protons. In the ionospheric F‐layer above the IPA zone, the Swarm satellites observed transverse Pc1 waves, which span wider latitudes than IPA. Around IPA, Swarm also detected the bipolar FAC and localized plasma density enhancement, which is occasionally surrounded by wide/shallow depletion. This indicates that wave‐induced proton precipitation contributes to the energy transfer from the magnetosphere to the ionosphere.

     
    more » « less
  5. Abstract

    We present a global survey of energetic electron precipitation from the equatorial magnetosphere due to hiss waves in the plasmasphere and plumes. Using Van Allen Probes measurements, we calculate the pitch angle diffusion coefficients at the bounce loss cone, and evaluate the energy spectrum of precipitating electron flux. Our ∼6.5‐year survey shows that, during disturbed times, hiss inside the plasmasphere primarily causes the electron precipitation atL > 4 over 8 h < MLT < 18 h, and hiss waves in plumes cause the precipitation atL > 5 over 8 h < MLT < 14 h andL > 4 over 14 h < MLT < 20 h. The precipitating energy flux increases with increasing geomagnetic activity, and is typically higher in the plasmaspheric plume than the plasmasphere. The characteristic energy of precipitation increases from ∼20 keV atL = 6–∼100 keV atL = 3, potentially causing the loss of electrons at several hundred keV.

     
    more » « less
  6. Abstract

    The LEXI and SMILE missions will provide soft X‐ray images of the Earth's magnetosheath and cusps after their anticipated launch in 2023 and 2024, respectively. The IBEX mission showed the potential of an Energetic Neutral Atom (ENA) instrument to image dayside magnetosheath and cusps, albeit over the long hours required to raster an image with a single pixel imager. Thus, it is timely to discuss the two imaging techniques and relevant science topics. We simulate soft X‐ray and low‐ENA images that might be observed by a virtual spacecraft during two interesting solar wind scenarios: a southward turning of the interplanetary magnetic field and a sudden enhancement of the solar wind dynamic pressure. We employ the OpenGGCM global magnetohydrodynamics model and a simple exospheric neutral density model for these calculations. Both the magnetosheath and the cusps generate strong soft X‐rays and ENA signals that can be used to extract the locations and motions of the bow shock and magnetopause. Magnetopause erosion corresponds closely to the enhancement of dayside reconnection rate obtained from the OpenGGCM model, indicating that images can be used to understand global‐scale magnetopause reconnection. When dayside imagers are installed with high‐ENA inner‐magnetosphere and FUV/UV aurora imagers, we can trace the solar wind energy flow from the bow shock to the magnetosphere and then to the ionosphere in a self‐standing manner without relying upon other observatories. Soft X‐ray and/or ENA imagers can also unveil the dayside exosphere density structure and its response to space weather.

     
    more » « less
  7. Abstract

    Whistler mode chorus waves can scatter plasma sheet electrons into the loss cone and produce the Earth's diffuse aurora. Van Allen Probes observed plasma sheet electron injections and intense chorus waves on 24 November 2012. We use quasilinear theory to calculate the precipitating electron fluxes, demonstrating that the chorus waves could lead to high differential energy fluxes of precipitating electrons with characteristic energies of 10–30 keV. Using this method, we calculate the precipitating electron flux from 2012 to 2019 when the Van Allen Probes were near the magnetic equator and perform global surveys of electron precipitation under different geomagnetic conditions. The most significant electron precipitation due to chorus is found from the nightside to dawn sectors over 4 < L < 6.5. The average total precipitating energy flux is enhanced during disturbed conditions, with time‐averaged values reaching ~3–10 erg/cm2/s whenAE ≥ 500 nT.

     
    more » « less
  8. Abstract. Terrestrial ecliptic dayside observations of the exospheric Lyman-α column intensity between 3–15 Earth radii (RE) by UVIS/HDAC (UVIS – ultraviolet imaging spectrograph; HDAC – hydrogen-deuterium absorptioncell) Lyman-α photometer at CASSINI have been analyzed to derive the neutral exospheric H-density profile at the Earth's ecliptic dayside in this radial range. The data were measured during CASSINI's swing-by maneuver at the Earth on 18 August 1999 and are published by Werner et al. (2004). In this study the dayside HDAC Lyman-α observations published by Werner et al. (2004) are compared to calculated Lyman-α intensities based on the 3D H-density model derived from TWINS (Two Wide-angle Imaging Neutral-atom Spectrometers) Lyman-α observations between 2008–2010 (Zoennchen et al., 2015). It was found that both Lyman-α profiles show a very similar radial dependence in particular between 3–8 RE. Between 3.0–5.5 RE impact distance Lyman-α observations of both TWINS and UVIS/HDAC exist at the ecliptic dayside. In this overlapping region the cross-calibration of the HDAC profile against the calculated TWINS profile was done, assuming that the exosphere there was similar for both due to comparable space weather conditions. As a result of the cross-calibration the conversion factor between counts per second and rayleigh, fc=3.285 counts s−1 R−1, is determined for these HDAC observations. Using this factor the radial H-density profile for the Earth's ecliptic dayside was derived from the UVIS/HDAC observations, which constrained the neutral H density there at 10 RE to a value of 35 cm−3. Furthermore, a faster radial H-density decrease was found at distances above 8 RE (≈r-3) compared to the lower distances of 3–7 RE (≈r-2.37). This increased loss of neutral H above 8 RE might indicate a higher rate of H ionization in the vicinity of the magnetopause at 9–11 RE (near subsolar point) and beyond, because of increasing charge exchange interactions of exospheric H atoms with solar wind ions outside the magnetosphere. 
    more » « less
  9. null (Ed.)