skip to main content


Title: A Novel Headset System Synchronizing Vision and EEG testing for a Rapid Assessment and Diagnosis of Concussions and Other Brain Injuries

Millions of concussions happen each year in the US alone. A proportionally large number of these concussions are due to high impact sports injury. Currently, there exists no solution to quickly monitor brain functions and test the oculomotor functions of individuals who have suffered a traumatic brain injury in order to diagnose them as having suffered a concussion. What is presently done to diagnose concussions is a CT scan or MRI, which are lengthy procedures to schedule, set up, and conduct; and furthermore, takes additional time to analyze the results in order to arrive at a diagnosis. This prolongation of the diagnosing process is inherently problematic since the longer time it takes between time of injury and time of diagnosis, there is greater risk of decisions and actions which can worsen damage to the brain. The sooner a concussion can be diagnosed, the sooner and better the treatment can be performed for recovery. In order to ameliorate this issue, we seek to develop a device to perform the function of diagnosis and monitoring of brain activity in a more rapid and timely manner. Literature review into the anatomy of vestibular and ocular brain functions was performed; as well as research into various testing and monitoring methodologies of these vestibular and ocular functions. One such method that has proven to be a reliable method for diagnosis is Vestibular Ocular Motor Screening (VOMS), which is a visual and balance test performed by a doctor with a patient. Further research was also done into existing technologies whose functionalities would allow the device in order to perform brain monitoring, visual testing, and ultimately diagnosis; namely EEG, VR, and infrared eye tracking. Currently, very few devices on the market take advantage of these technologies together for medical uses. A device incorporating these technologies together allows would allow for more consistent administering of visual tests and real-time monitoring of brain activity. With a functional prototype, user testing is to be performed in order to assess the function and viability of the device.

 
more » « less
Award ID(s):
1757949 1827769 1650536
PAR ID:
10348671
Author(s) / Creator(s):
;
Date Published:
Journal Name:
AHFE International
Volume:
51
ISSN:
2771-0718
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Background: Patients with uncomplicated cases of concussion are thought to fully recover within several months as symptoms resolve. However, at the group level, undergraduates reporting a history of concussion (mean: 4.14 years post-injury) show lasting deficits in visual working memory performance. To clarify what predicts long-term visual working memory outcomes given heterogeneous performance across group members, we investigated factors surrounding the injury, including gender, number of mild traumatic brain injuries, time since mild traumatic brain injury (mTBI), loss of consciousness (LOC) (yes, no), and mTBI etiology (non-sport, team sport, high impact sport, and individual sport). We also collected low-density resting state electroencephalogram to test whether spectral power was correlated with performance. Aim: The purpose of this study was to identify predictors for poor visual working memory outcomes in current undergraduates with a history of concussion. Methods: Participants provided a brief history of their injury and symptoms. Participants also completed an experimental visual working memory task. Finally, low-density resting-state electroencephalogram was collected. Results: The key observation was that LOC at the time of injury predicted superior visual working memory years later. In contrast, visual working memory performance was not predicted by other factors, including etiology, high impact sports, or electroencephalogram spectral power. Conclusions: Visual working memory deficits are apparent at the group level in current undergraduates with a history of concussion. LOC at the time of concussion predicts less impaired visual working memory performance, whereas no significant links were associated with other factors. One interpretation is that after LOC, patients are more likely to seek medical advice than without LOC. Relevance for patients: Concussion is a head injury associated with future cognitive changes in some people. Concussion should be taken seriously, and medical treatment sought whenever a head injury occurs. 
    more » « less
  2. Kalra, Jay Lightner (Ed.)
    This study aims to discover a possible relationship between electroencephalogram (EEG) signature changes as physiological indicators of one’s current state, and performance on the Vestibular Ocular Motor Screening (VOMS) assessment. A Muse 2 generated a baseline EEG scan for each participant, allowing for the collection of data associated with one’s brain activity. The subjects were then taken through several VOMS domain tests with a continued recording by the device. A comparable analysis was conducted between the participant’s baseline recording and VOMS recording with an intent to identify the consistent correlations in between. In conclusion the findings of this study show potential for characteristic brain activity patterns dependent upon what VOMS domain is being tested. Therefore, when any deviations from those features are observed, the likelihood of the presence of a concussion is much greater. 
    more » « less
  3. null (Ed.)
    Abstract Mild traumatic brain injury (mTBI), or concussion, accounts for 85% of all TBIs. Yet survivors anticipate full cognitive recovery within several months of injury, if not sooner, dependent upon the specific outcome/measure. Recovery is variable and deficits in executive function, e.g., working memory (WM) can persist years post-mTBI. We tested whether cognitive deficits persist in otherwise healthy undergraduates, as a conservative indicator for mTBI survivors at large. We collected WM performance (change detection, n-back tasks) using various stimuli (shapes, locations, letters; aurally presented numbers and letters), and wide-ranging cognitive assessments (e.g., RBANS). We replicated the observation of a general visual WM deficit, with preserved auditory WM. Surprisingly, visual WM deficits were equivalent in participants with a history of mTBI (mean 4.3 years post-injury) and in undergraduates with recent sports-related mTBI (mean 17 days post-injury). In seeking the underlying mechanism of these behavioral deficits, we collected resting state fMRI (rsfMRI) and EEG (rsEEG). RsfMRI revealed significantly reduced connectivity within WM-relevant networks (default mode, central executive, dorsal attention, salience), whereas rsEEG identified no differences (modularity, global efficiency, local efficiency). In summary, otherwise healthy current undergraduates with a history of mTBI present behavioral deficits with evidence of persistent disconnection long after full recovery is expected. 
    more » « less
  4. null (Ed.)
    Have you ever felt “groggy” after hitting your head? We are learning more about how important it is to protect your brain from injuries, such as concussion. Concussion is also called mild traumatic brain injury (mTBI). After an mTBI, most people think patients recover within a few weeks. We noticed that some college students who had had an mTBI were struggling to remember information for a few seconds. This ability is called working memory and we need it for most thinking jobs, like remembering the name of someone you just met, or what you wanted to get from the fridge. In our experiments, we tested different groups of students to see if they could remember things for 1 s, like the color of squares. Participants with a history of mTBI (on average, more than 4 years after injury) performed worse than students without a history of mTBI. The take-home message is that there can be lasting effects of mTBI, even years after it happens. 
    more » « less
  5. A leading cause of physical injury sustained by elderly persons is the event of unintentionally falling. A delay between the time of fall and the time of medical attention can exacerbate injury if the fall resulted in a concussion, traumatic brain injury, or bone fracture. The authors present a solution capable of finding and tracking, in real-time, the location of an elderly person within an indoor facility, using only existing Wi-Fi infrastructure. This paper discusses the development of an open source software framework capable of finding the location of an individual within 3m accuracy using 802.11 Wi-Fi in good coverage areas. This framework is comprised of an embedded software layer, a Web Services layer, and a mobile application for monitoring the location of individuals, calculated using trilateration, with Kalman filtering employed to reduce the effect of multipath interference. The solution provides a real-time, low cost, extendible solution to the problem of indoor geolocation to mitigate potential harm to elderly persons who have fallen and require immediate medical help. 
    more » « less