Abstract Geological records of ice sheet collapse can provide perspective on the ongoing retreat of grounded and floating ice. An abrupt retreat of the West Antarctic Ice Sheet (WAIS) that occurred during the early deglaciation is well recorded on the eastern Ross Sea continental shelf. There, an ice shelf breakup at 12.3 ± 0.6 cal. (calibrated) kyr BP caused accelerated ice-mass loss from the Bindschadler Ice Stream (BIS). The accelerated mass loss led to a significant negative mass balance that re-organized WAIS flow across the central and eastern Ross Sea. By ~ 11.5 ± 0.3 cal kyr BP, dynamic thinning of grounded ice triggered a retreat that opened a ~ 200-km grounding-line embayment on the Whales Deep Basin (WDB) middle continental shelf. Here, we reconstruct the pattern, duration and rate of retreat from a backstepping succession of small-scale grounding-zone ridges that formed on the embayment’s eastern flank. We used two end-member paleo-sediment fluxes, i.e., accumulation rates, to convert the cumulative sediment volumes of the ridge field to elapsed time for measured distances of grounding-line retreat. The end-members fluxes correspond to deposition rates for buttressed and unbuttressed ice stream flow. Both scenarios require sustained rapid retreat that exceeded several centuries. Grounding-line retreat is estimated to have averaged between ~ 100 ± 32 and ~ 700 ± 79 ma−1. The evidence favors the latter scenario because iceberg furrows that cross cut the ridges in deep water require weakly buttressed flow as the embayment opened. In comparison with the modern grounding-zone dynamics, this paleo-perspective provides confidence in model projections that a large-scale sustained contraction of grounded ice is underway in several Pacific-Ocean sectors of the WAIS.
more »
« less
A significant acceleration of ice volume discharge preceded a major retreat of a West Antarctic paleo–ice stream
Abstract For the period between 14.7 and 11.5 cal. (calibrated) kyr B.P, the sediment flux of Bindschadler Ice Stream (BIS; West Antarctica) averaged 1.7 × 108 m3 a−1. This implies that BIS velocity averaged 500 ± 120 m a−1. At a finer resolution, the data suggest two stages of ice stream flow. During the first 2400 ± 400 years of a grounding-zone stillstand, ice stream flow averaged 200 ± 90 m a−1. Following ice-shelf breakup at 12.3 ± 0.2 cal. kyr B.P., flow accelerated to 1350 ± 580 m a−1. The estimated ice volume discharge after breakup exceeds the balance velocity by a factor of two and implies ice mass imbalance of −40 Gt a−1 just before the grounding zone retreated >200 km. We interpret that the paleo-BIS maintained sustainable discharge throughout the grounding-zone stillstand first due to the buttressing effect of its fringing ice shelf and then later (i.e., after ice-shelf breakup) due to the stabilizing effects of grounding-zone wedge aggradation. Major paleo–ice stream retreat, shortly after the ice-shelf breakup that triggered the inferred ice flow acceleration, substantiates the current concerns about rapid, near-future retreat of major glaciers in the Amundsen Sea sector where Pine Island and Thwaites Glaciers are already experiencing ice-shelf instability and grounding-zone retreat that have triggered upstream-propagating thinning and ice acceleration.
more »
« less
- Award ID(s):
- 1739027
- PAR ID:
- 10144074
- Date Published:
- Journal Name:
- Geology
- Volume:
- 48
- Issue:
- 4
- ISSN:
- 0091-7613
- Page Range / eLocation ID:
- 313 to 317
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract. Antarctic ice shelves buttress the flow of the ice sheet but are vulnerable to increased basal melting from contact with a warming ocean and increased mass loss from calving due to changing flow patterns. Channels and similar features at the bases of ice shelves have been linked to enhanced basal melting and observed to intersect the grounding zone, where the greatest melt rates are often observed. The ice shelf of Thwaites Glacier is especially vulnerable to basal melt and grounding zone retreat because the glacier has a retrograde bed leading to a deep trough below the grounded ice sheet. We use digital surface models from 2010–2022 to investigate the evolution of its ice-shelf channels, grounding zone position, and the interactions between them. We find that the highest sustained rates of grounding zone retreat (up to 0.7 km yr−1) are associated with high basal melt rates (up to ∼250 m yr−1) and are found where ice-shelf channels intersect the grounding zone, especially atop steep local retrograde slopes where subglacial channel discharge is expected. We find no areas with sustained grounding zone advance, although some secular retreat was distal from ice-shelf channels. Pinpointing other locations with similar risk factors could focus assessments of vulnerability to grounding zone retreat.more » « less
-
Abstract Recent ice-mass loss driven by warming along the Antarctic Peninsula has resulted in rapid changes in uplift rates across the region. Are such events only a function of recent warming? If not, does the Earth response to such events last long enough to be preserved in Holocene records of relative sea level (RSL), and thus have a bearing on global-scale glacial isostatic adjustment (GIA) models (e.g. ICE-6G)? Answering such questions in Antarctica is hindered by the scarcity of RSL reconstructions within the region. Here, a new RSL reconstruction for Antarctica is presented based on beach ridges from Joinville Island on the Antarctic Peninsula. We find that RSL has fallen 4.9 ± 0.58 m over the past 3100 yr, and that the island experienced a significant increase in the rate of RSL fall from 1540 ± 125 cal. (calibrated) yr B.P. to 1320 ± 125 cal. yr B.P. This increase in the rate of RSL fall is likely due to the viscoelastic response of the solid Earth to terrestrial ice-mass loss from the Antarctic Peninsula, similar to the Earth response experienced after ice-mass loss following acceleration of glaciers behind the collapsed Larsen B ice shelf in 2002 C.E. Additionally, slower rates of beach-ridge progradation from 695 ± 190 cal. yr B.P. to 235 ± 175 cal. yr B.P. potentially reflect erosion of beach ridges from a RSL rise induced by a local glacial advance. The rapid response of the Earth to minor ice-mass changes recorded in the RSL record further supports recent assertions of a more responsive Earth to glacial unloading and at time scales relevant for GIA of Holocene and Pleistocene sea levels. Thus, current continental and global GIA models may not accurately capture the ice-mass changes of the Antarctic ice sheets at decadal and centennial time scales.more » « less
-
We combine geomorphological and sediment core evidence to investigate phases of ice margin stability and instability during retreat of the Boothia Lancaster Ice Stream (BLIS) of the NE Laurentide Ice Sheet (LIS) since the Last Glacial Maximum (LGM). Sediment cores 2008029-059 PC and TWC (59CC) and 2013029-064 PC (64 PC) from Lancaster Sound and Baffin Bay, respectively, represent LGM through Holocene environments, including three Baffin Bay Detrital Carbonate (BBDC) events that have been thought to manifest calving events within Lancaster Sound. Previous mapping of glacigenic landforms shows that 64 PC lies within the LGM limit of the convergent BLIS and Tasiujaq Ice Stream (TIS) on the northeastern Baffin Island shelf, while 59CC terminates within subglacial/ice marginal sediments termed the Baffin Shelf Drift (BSD), capturing the history of BLIS retreat from 15.3 cal ka BP onward. In 64 PC, a basal sediment gravity flow deposit is overlain by dolomite-rich BBDC 2, which is re-interpreted here as a subglacial/ice marginal deposit and renamed GZ-BBDC. Both gravity flows are interpreted to have formed during retreat of the confluent TIS and BLIS from the LGM maximum extent. Overlying GZ-BBDC, in 64 PC, is a finely laminated lithofacies interpreted as an ice-shelf facies formed beneath the ice shelf fronting the confluent TIS and BLIS when it occupied a large LGM grounding zone wedge (GZW) in northern Baffin Bay. The ice-shelf facies indicates temporary stabilization of the conjoined TIS and BLIS. The overlying thin black glaciomarine diamicton records disintegration of the ice shelf and retreat of the TIS. Ice retreat over Cretaceous and younger bedrock into Lancaster Sound is recorded by dark brown diamicton and glaciomarine sediments in 59CC. The overlying tan, detrital carbonate-rich glaciomarine diamicton, BBDC 1 in 59 PC, manifests calving retreat of the BLIS onto the Paleozoic carbonate bedrock within Lancaster Sound by 15 cal ka BP. A slightly later onset of BBDC 1 in 64 PC, of ca.14.5 cal ka BP, points to the influence of local conditions such as sea ice and local iceberg calving on the distribution of IRD off of Pond Inlet. The pause in ice rafting and detrital carbonate deposition between BBDC 1 and BBDC 0 within the Younger Dryas chron likely results from BLIS readvance to Devon Island and its stabilization there until 11.6 cal ka BP. BLIS retreat into Prince Regent Inlet marks the onset of BBDC 0. These new results indicate multiple periods of instability of the BLIS, which are responsible for BBDC events identified throughout Baffin Bay.more » « less
-
Abstract. Societal adaptation to rising sea levels requires robust projections of the Antarctic Ice Sheet’s retreat, particularly due to ocean-driven basal melting of its fringing ice shelves. Recent advances in ocean models that simulate ice-shelf melting offer an opportunity to reduce uncertainties in ice–ocean interactions. Here, we compare several community-contributed, circum-Antarctic ocean simulations to highlight inter-model differences, evaluate agreement with satellite-derived melt rates, and examine underlying physical processes. All but one simulation use a melting formulation depending on both thermal driving (T ⋆) and friction velocity (u⋆), which together represent the thermal and ocean current forcings at the ice–ocean interface. Simulated melt rates range from 650 to 1277 Gt year−1 (m = 0.45 − 0.91 m year−1), driven by variations in model resolution, parameterisations, and sub-ice shelf circulation. Freeze-to-melt ratios span 0.30 to 30.12 %, indicating large differences in how refreezing is represented. The multi-model mean (MMM) produces an averaged melt rate of 0.60 m year−1 from a net mass loss of 842.99 Gt year−1 (876.03 Gt year−1 melting and 33.05 Gt year−1 refreezing), yielding a freeze-to-melt ratio of 3.92 %. We define a thermo-kinematic melt sensitivity, ζ = m/(T ⋆ u⋆) = 4.82 × 10−5 °C−1 for the MMM, with individual models spanning 2.85 × 10−5 to 19.4 × 10−5 °C−1. Higher melt rates typically occur near grounding zones where both T ⋆ and u⋆ exert roughly equal influence. Because friction velocity is critical for turbulent heat exchange, ice-shelf melting must be characterised by both ocean energetics and thermal forcing. Further work to standardise model setups and evaluation of results against in situ observations and satellite data will be essential for increasing model accuracy, reducing uncertainties, to improve our understanding of ice-shelf–ocean interactions and refine sea-level rise predictions.more » « less
An official website of the United States government

