skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Characterization of a Cutaneous Microbiome of a Community of Lungless Salamanders in Cherokee County, Georgia
Research over the last decade has revealed the importance of the cutaneous microbiome for the health and immune function of amphibians. Thousands of Bacteria and Archaeans species living in and on the skin are able to outcompete pathogenic species of fungus or types of viruses. The relationship between microbes and their host is so intimate that the term "metaorganism" has been used to describe this phenomenon. We are, however, at the early stages of understanding what determines the composition of the cutaneous microbiome and the relative effects of factors like genetics and habitat use. Could it be that there is a species-specific “microbiome fingerprint” that is consistent across different sites? Do species inhabiting similar microhabitats host similar microbes? We have replicated a similar study performed in Sosbee Cove in Union County, with a site in Cherokee County, with multiple species that are comparable across the two sites. We present our project designed to answer these questions and report preliminary results.  more » « less
Award ID(s):
2027813
PAR ID:
10348888
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Georgia journal of science
Volume:
80
Issue:
1
ISSN:
0147-9369
Page Range / eLocation ID:
49
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Kormas, Konstantinos Aristomenis (Ed.)
    ABSTRACT The study of the mammalian microbiome serves as a critical tool for understanding host-microbial diversity and coevolution and the impact of bacterial communities on host health. While studies of specific microbial systems (e.g., in the human gut) have rapidly increased, large knowledge gaps remain, hindering our understanding of the determinants and levels of variation in microbiomes across multiple body sites and host species. Here, we compare microbiome community compositions from eight distinct body sites among 17 phylogenetically diverse species of nonhuman primates (NHPs), representing the largest comparative study of microbial diversity across primate host species and body sites. Analysis of 898 samples predominantly acquired in the wild demonstrated that oral microbiomes were unique in their clustering, with distinctive divergence from all other body site microbiomes. In contrast, all other body site microbiomes clustered principally by host species and differentiated by body site within host species. These results highlight two key findings: (i) the oral microbiome is unique compared to all other body site microbiomes and conserved among diverse nonhuman primates, despite their considerable dietary and phylogenetic differences, and (ii) assessments of the determinants of host-microbial diversity are relative to the level of the comparison (i.e., intra-/inter-body site, -host species, and -individual), emphasizing the need for broader comparative microbial analyses across diverse hosts to further elucidate host-microbial dynamics, evolutionary and biological patterns of variation, and implications for human-microbial coevolution. IMPORTANCE The microbiome is critical to host health and disease, but much remains unknown about the determinants, levels, and evolution of host-microbial diversity. The relationship between hosts and their associated microbes is complex. Most studies to date have focused on the gut microbiome; however, large gaps remain in our understanding of host-microbial diversity, coevolution, and levels of variation in microbiomes across multiple body sites and host species. To better understand the patterns of variation and evolutionary context of host-microbial communities, we conducted one of the largest comparative studies to date, which indicated that the oral microbiome was distinct from the microbiomes of all other body sites and convergent across host species, suggesting conserved niche specialization within the Primates order. We also show the importance of host species differences in shaping the microbiome within specific body sites. This large, comparative study contributes valuable information on key patterns of variation among hosts and body sites, with implications for understanding host-microbial dynamics and human-microbial coevolution. 
    more » « less
  2. Host-associated microbiomes play important roles in host health and pathogen defense. In amphibians, the skin-associated microbiota can contribute to innate immunity with potential implications for disease management. Few studies have examined season-long temporal variation in the amphibian skin-associated microbiome, and the interactions between bacteria and fungi on amphibian skin remain poorly understood. We characterize season-long temporal variation in the skin-associated microbiome of the western tiger salamander ( Ambystoma mavortium ) for both bacteria and fungi between sites and across salamander life stages. Two hundred seven skin-associated microbiome samples were collected from salamanders at two Rocky Mountain lakes throughout the summer and fall of 2018, and 127 additional microbiome samples were collected from lake water and lake substrate. We used 16S rRNA and ITS amplicon sequencing with Bayesian Dirichlet-multinomial regression to estimate the relative abundances of bacterial and fungal taxa, test for differential abundance, examine microbial selection, and derive alpha diversity. We predicted the ability of bacterial communities to inhibit the amphibian chytrid fungus Batrachochytrium dendrobatidis ( Bd ), a cutaneous fungal pathogen, using stochastic character mapping and a database of Bd -inhibitory bacterial isolates. For both bacteria and fungi, we observed variation in community composition through time, between sites, and with salamander age and life stage. We further found that temporal trends in community composition were specific to each combination of salamander age, life stage, and lake. We found salamander skin to be selective for microbes, with many taxa disproportionately represented relative to the environment. Salamander skin appeared to select for predicted Bd -inhibitory bacteria, and we found a negative relationship between the relative abundances of predicted Bd -inhibitory bacteria and Bd . We hope these findings will assist in the conservation of amphibian species threatened by chytridiomycosis and other emerging diseases. 
    more » « less
  3. Abstract Captive breeding has become a critical tool for the restoration of amphibian populations decimated by diseases. However, much is unknown about effects of long-term captivity on amphibian health and particularly immune system function. Therefore, we have begun a project to understand the effects of captivity and captive breeding on the cutaneous microbiome of lungless salamanders. The community of microbes living in and on the skin of lungless salamanders (Plethodontidae) is an important predictor of the organisms’ ability to ward off diseases like chytridiomycosis. We compare the microbiome of wild and long-term (8 years) captive or captive-bred Ocoee and Blue Ridge two-lined salamanders (Desmognathus ocoee and Eurycea wilderae, respectively) all from the Charles H. Wharton Conservation Center in Union County, GA. Microbiome communities were estimated by amplifying the V4 region of the 16S rDNA gene and then comparing with sequences from the Greengenes database. We present our study design and preliminary results. 
    more » « less
  4. Abstract The microbiome has been hypothesized as a driving force of phenotypic variation in host organisms that is capable of extending metabolic processes, altering development and in some cases, conferring novel functions that are critical for survival. Only a few studies have directly shown a causal role for the environmental microbiome in altering host phenotypic features. To assess the extent to which environmental microbes induce variation in host life‐history traits and behaviour, we inoculated axenicDrosophila melanogasterwith microbes isolated from drosophilid populations collected from two different field sites and generated two populations with distinct bacterial and fungal profiles. We show that microbes isolated from environmental sites with modest abiotic differences induce large variation in host reproduction, fatty acid levels, stress tolerance and sleep behaviour. Importantly, clearing microbes from each experimental population removed the phenotypic differences. The results support the causal role of environmental microbes as drivers of host phenotypic plasticity and potentially, rapid adaptation and evolution. 
    more » « less
  5. Microbes are found in nearly every habitat and organism on the planet, where they are critical to host health, fitness, and metabolism. In most organisms, few microbes are inherited at birth; instead, acquiring microbiomes generally involves complicated interactions between the environment, hosts, and symbionts. Despite the criticality of microbiome acquisition, we know little about where hosts’ microbes reside when not in or on hosts of interest. Because microbes span a continuum ranging from generalists associating with multiple hosts and habitats to specialists with narrower host ranges, identifying potential sources of microbial diversity that can contribute to the microbiomes of unrelated hosts is a gap in our understanding of microbiome assembly. Microbial dispersal attenuates with distance, so identifying sources and sinks requires data from microbiomes that are contemporary and near enough for potential microbial transmission. Here, we characterize microbiomes across adjacent terrestrial and aquatic hosts and habitats throughout an entire watershed, showing that the most species-poor microbiomes are partial subsets of the most species-rich and that microbiomes of plants and animals are nested within those of their environments. Furthermore, we show that the host and habitat range of a microbe within a single ecosystem predicts its global distribution, a relationship with implications for global microbial assembly processes. Thus, the tendency for microbes to occupy multiple habitats and unrelated hosts enables persistent microbiomes, even when host populations are disjunct. Our whole-watershed census demonstrates how a nested distribution of microbes, following the trophic hierarchies of hosts, can shape microbial acquisition. 
    more » « less