We study maximal length collections of disjoint paths, or ‘disjoint optimizers’, in the directed landscape. We show that disjoint optimizers always exist, and that their lengths can be used to construct an extended directed landscape. The extended directed landscape can be built from an independent collection of extended Airy sheets, which we define from the parabolic Airy line ensemble. We show that the extended directed landscape and disjoint optimizers are scaling limits of the corresponding objects in Brownian last passage percolation (LPP). As two consequences of this work, we show that one direction of the Robinson-Schensted-Knuth bijection passes to the KPZ limit, and we find a criterion for geodesic disjointness in the directed landscape that uses only a single parabolic Airy line ensemble. The proofs rely on a new notion of multi-point LPP across the parabolic Airy line ensemble, combinatorial properties of multi-point LPP, and probabilistic resampling ideas.
more »
« less
From curves to currents
Abstract Many natural real-valued functions of closed curves are known to extend continuously to the larger space of geodesic currents. For instance, the extension of length with respect to a fixed hyperbolic metric was a motivating example for the development of geodesic currents. We give a simple criterion on a curve function that guarantees a continuous extension to geodesic currents. The main condition of our criterion is the smoothing property, which has played a role in the study of systoles of translation lengths for Anosov representations. It is easy to see that our criterion is satisfied for almost all known examples of continuous functions on geodesic currents, such as nonpositively curved lengths or stable lengths for surface groups, while also applying to new examples like extremal length. We use this extension to obtain a new curve counting result for extremal length.
more »
« less
- PAR ID:
- 10349026
- Date Published:
- Journal Name:
- Forum of Mathematics, Sigma
- Volume:
- 9
- ISSN:
- 2050-5094
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
We investigate positivity and probabilistic properties arising from the Young-Fibonacci lattice $$\mathbb{YF}$$, a 1-differential poset on binary words composed of 1's and 2's (known as Fibonacci words). Building on Okada's theory of clone Schur functions (Trans. Amer. Math. Soc. 346 (1994), 549-568), we introduce clone coherent measures on $$\mathbb{YF}$$ which give rise to random Fibonacci words of increasing length. Unlike coherent systems associated to classical Schur functions on the Young lattice of integer partitions, clone coherent measures are generally not extremal on $$\mathbb{YF}$$. Our first main result is a complete characterization of Fibonacci positive specializations - parameter sequences which yield positive clone Schur functions on $$\mathbb{YF}$$. We connect Fibonacci positivity with total positivity of tridiagonal matrices, Stieltjes moment sequences, and orthogonal polynomials in one variable from the ($$q$$-)Askey scheme. Our second family of results concerns the asymptotic behavior of random Fibonacci words derived from various Fibonacci positive specializations. We analyze several limiting regimes for specific examples, revealing stick-breaking-like processes (connected to GEM distributions), dependent stick-breaking processes of a new type, or discrete limits tied to the Martin boundary of the Young-Fibonacci lattice. Our stick-breaking-like scaling limits significantly extend the result of Gnedin-Kerov (Math. Proc. Camb. Philos. Soc. 129 (2000), no. 3, 433-446) on asymptotics of the Plancherel measure on $$\mathbb{YF}$$. We also establish Cauchy-like identities for clone Schur functions (with the right-hand side given by a quadridiagonal determinant), and construct and analyze models of random permutations and involutions based on Fibonacci positive specializations and a version of the Robinson-Schensted correspondence for $$\mathbb{YF}$$.more » « less
-
We study axisymmetric solutions to the wave equation on extremal Kerr backgrounds and obtain integrated local energy decay (or Morawetz estimates) through an analysis exclusively in physical-space. Boundedness of the energy and Morawetz estimates for axisymmetric waves in extremal Kerr were first obtained by Aretakis [13] through the construction of frequency-localized currents used in particular to express the trapping degeneracy. Here we extend to extremal Kerr a method introduced by Stogin [63] in the sub-extremal case, simplifying Aretakis’ derivation of Morawetz estimates through purely classical currents.more » « less
-
null (Ed.)Abstract Given a sequence of curves on a surface, we provide conditions which ensure that (1) the sequence is an infinite quasi-geodesic in the curve complex, (2) the limit in the Gromov boundary is represented by a nonuniquely ergodic ending lamination, and (3) the sequence divides into a finite set of subsequences, each of which projectively converges to one of the ergodic measures on the ending lamination. The conditions are sufficiently robust, allowing us to construct sequences on a closed surface of genus g for which the space of measures has the maximal dimension {3g-3} , for example. We also study the limit sets in the Thurston boundary of Teichmüller geodesic rays defined by quadratic differentials whose vertical foliations are obtained from the constructions mentioned above. We prove that such examples exist for which the limit is a cycle in the 1-skeleton of the simplex of projective classes of measures visiting every vertex.more » « less
-
Kráľovič, Rastislav; Kučera, Antonín (Ed.)We characterize the algorithmic dimensions (i.e., the lower and upper asymptotic densities of information) of infinite binary sequences in terms of the inability of learning functions having an algorithmic constraint to detect patterns in them. Our pattern detection criterion is a quantitative extension of the criterion that Zaffora Blando used to characterize the algorithmically random (i.e., Martin-Löf random) sequences. Our proof uses Lutz’s and Mayordomo’s respective characterizations of algorithmic dimension in terms of gales and Kolmogorov complexity.more » « less
An official website of the United States government

