skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Limit sets of Teichmüller geodesics with minimal nonuniquely ergodic vertical foliation, II
Abstract Given a sequence of curves on a surface, we provide conditions which ensure that (1) the sequence is an infinite quasi-geodesic in the curve complex, (2) the limit in the Gromov boundary is represented by a nonuniquely ergodic ending lamination, and (3) the sequence divides into a finite set of subsequences, each of which projectively converges to one of the ergodic measures on the ending lamination. The conditions are sufficiently robust, allowing us to construct sequences on a closed surface of genus g for which the space of measures has the maximal dimension {3g-3} , for example. We also study the limit sets in the Thurston boundary of Teichmüller geodesic rays defined by quadratic differentials whose vertical foliations are obtained from the constructions mentioned above. We prove that such examples exist for which the limit is a cycle in the 1-skeleton of the simplex of projective classes of measures visiting every vertex.  more » « less
Award ID(s):
1510034
PAR ID:
10250782
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Journal für die reine und angewandte Mathematik (Crelles Journal)
Volume:
2020
Issue:
758
ISSN:
0075-4102
Page Range / eLocation ID:
1 to 66
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Abstract In this paper we prove that the limit set of any Weil–Petersson geodesic ray with uniquely ergodic ending lamination is a single point in the Thurston compactification of Teichmüller space. On the other hand, we construct examples of Weil–Petersson geodesics with minimal non-uniquely ergodic ending laminations and limit set a circle in the Thurston compactification. 
    more » « less
  2. We study the cone of transverse measures to a fixed geodesic lamination on an infinite type hyperbolic surface. Under simple hypotheses on the metric, we give an explicit description of this cone as an inverse limit of finite-dimensional cones. We study the problem of when the cone of transverse measures admits a base and show that such a base exists for many laminations. Moreover, the base is a (typically infinite-dimensional) simplex (called aChoquet simplex) and can be described explicitly as an inverse limit of finite-dimensional simplices. We show that on any fixed infinite type hyperbolic surface, every Choquet simplex arises as a base forsomelamination. We use our inverse limit description and a new construction of geodesic laminations to give other explicit examples of cones with exotic properties. 
    more » « less
  3. A discrete quantum process is represented by a sequence of quantum operations, which are completely positive maps that are not necessarily trace preserving. We consider quantum processes that are obtained by repeated iterations of a quantum operation with noise. Such ergodic quantum processes generalize independent quantum processes. An ergodic theorem describing convergence to equilibrium for a general class of such processes has been recently obtained by Movassagh and Schenker. Under irreducibility and mixing conditions, we obtain a central limit type theorem describing fluctuations around the ergodic limit. 
    more » « less
  4. Abstract As discovered by W. Thurston, the action of a complex one-variable polynomial on its Julia set can be modeled by a geodesic lamination in the disk, provided that the Julia set is connected. It also turned out that the parameter space of such dynamical laminations of degree two gives a model for the bifurcation locus in the space of quadratic polynomials. This model is itself a geodesic lamination, the so calledquadratic minor laminationof Thurston. In the same spirit, we consider the space of allcubic symmetric polynomials$$f_\unicode{x3bb} (z)=z^3+\unicode{x3bb} ^2 z$$in three articles. In the first one, we construct thecubic symmetric comajor laminationtogether with the corresponding quotient space of the unit circle. As is verified in the third paper, this yields a monotone model of thecubic symmetric connectedness locus, that is, the space of all cubic symmetric polynomials with connected Julia sets. In the present paper, the second in the series, we develop an algorithm for generating the cubic symmetric comajor lamination analogous to the Lavaurs algorithm for constructing the quadratic minor lamination. 
    more » « less
  5. Abstract We construct an unfolding path in Outer space which does not converge in the boundary, and instead it accumulates on the entire 1-simplex of projectivized length measures on a nongeometric arational$${\mathbb R}$$-treeT. We also show thatTadmits exactly two dual ergodic projective currents. This is the first nongeometric example of an arational tree that is neither uniquely ergodic nor uniquely ergometric. 
    more » « less