skip to main content


Title: Towards Sample-efficient Overparameterized Meta-learning
An overarching goal in machine learning is to build a generalizable model with few samples. To this end, overparameterization has been the subject of immense interest to explain the generalization ability of deep nets even when the size of the dataset is smaller than that of the model. While the prior literature focuses on the classical supervised setting, this paper aims to demystify overparameterization for meta-learning. Here we have a sequence of linear-regression tasks and we ask: (1) Given earlier tasks, what is the optimal linear representation of features for a new downstream task? and (2) How many samples do we need to build this representation? This work shows that surprisingly, overparameterization arises as a natural answer to these fundamental meta-learning questions. Specifically, for (1), we first show that learning the optimal representation coincides with the problem of designing a task-aware regularization to promote inductive bias. We leverage this inductive bias to explain how the downstream task actually benefits from overparameterization, in contrast to prior works on few-shot learning. For (2), we develop a theory to explain how feature covariance can implicitly help reduce the sample complexity well below the degrees of freedom and lead to small estimation error. We then integrate these findings to obtain an overall performance guarantee for our meta-learning algorithm. Numerical experiments on real and synthetic data verify our insights on overparameterized meta-learning.  more » « less
Award ID(s):
2023166
NSF-PAR ID:
10349166
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Advances in neural information processing systems
Volume:
34
ISSN:
1049-5258
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Prevailing methods for graphs require abundant label and edge information for learning. When data for a new task are scarce, meta-learning can learn from prior experiences and form much-needed inductive biases for fast adaption to new tasks. Here, we introduce G-Meta, a novel meta-learning algorithm for graphs. G-Meta uses local subgraphs to transfer subgraph-specific information and learn transferable knowledge faster via meta gradients. G-Meta learns how to quickly adapt to a new task using only a handful of nodes or edges in the new task and does so by learning from data points in other graphs or related, albeit disjoint label sets. G-Meta is theoretically justified as we show that the evidence for a prediction can be found in the local subgraph surrounding the target node or edge. Experiments on seven datasets and nine baseline methods show that G-Meta outperforms existing methods by up to 16.3%. Unlike previous methods, G-Meta successfully learns in challenging, few-shot learning settings that require generalization to completely new graphs and never-before-seen labels. Finally, G-Meta scales to large graphs, which we demonstrate on a new Tree-of-Life dataset comprising of 1,840 graphs, a two-orders of magnitude increase in the number of graphs used in prior work. 
    more » « less
  2. Utilizing task-invariant prior knowledge extracted from related tasks, meta-learning is a principled framework that empowers learning a new task especially when data records are limited. A fundamental challenge in meta-learning is how to quickly "adapt" the extracted prior in order to train a task-specific model within a few optimization steps. Existing approaches deal with this challenge using a preconditioner that enhances convergence of the per-task training process. Though effective in representing locally a quadratic training loss, these simple linear preconditioners can hardly capture complex loss geometries. The present contribution addresses this limitation by learning a nonlinear mirror map, which induces a versatile distance metric to enable capturing and optimizing a wide range of loss geometries, hence facilitating the per-task training. Numerical tests on few-shot learning datasets demonstrate the superior expressiveness and convergence of the advocated approach. 
    more » « less
  3. Graph few-shot learning is of great importance among various graph learning tasks. Under the few-shot scenario, models are often required to conduct classification given limited labeled samples. Existing graph few-shot learning methods typically leverage Graph Neural Networks (GNNs) and perform classification across a series of meta-tasks. Nevertheless, these methods generally rely on the original graph (i.e., the graph that the meta-task is sampled from) to learn node representations. Consequently, the learned representations for the same nodes are identical in all meta-tasks. Since the class sets are different across meta-tasks, node representations should be task-specific to promote classification performance. Therefore, to adaptively learn node representations across meta-tasks, we propose a novel framework that learns a task-specific structure for each meta-task. To handle the variety of nodes across meta-tasks, we extract relevant nodes and learn task-specific structures based on node influence and mutual information. In this way, we can learn node representations with the task-specific structure tailored for each meta-task. We further conduct extensive experiments on five node classification datasets under both single- and multiple-graph settings to validate the superiority of our framework over the state-of-the-art baselines. 
    more » « less
  4. Relying on prior knowledge accumulated from related tasks, meta-learning offers a powerful approach to learning a novel task from a limited number of training data. Recent approaches use a family of prior probability density functions or recurrent neural network models, whose parameters can be optimized by utilizing labeled data from the observed tasks. While these approaches have appealing empirical performance, expressiveness of their prior is relatively low, which limits generalization and interpretation of meta-learning. Aiming at expressive yet meaningful priors, this contribution puts forth a novel prior representation model that leverages the notion of algorithm unrolling. The key idea is to unroll the proximal gradient descent steps, where learnable piecewise linear functions are developed to approximate the desired proximal operators within tight theoretical error bounds established for both smooth and non-smooth proximal functions. The resultant multi-block neural network not only broadens the scope of learnable priors, but also enhances interpretability from an optimization viewpoint. Numerical tests conducted on few-shot learning datasets demonstrate markedly improved performance with flexible, visualizable, and understandable priors. 
    more » « less
  5. null (Ed.)
    The problem of learning to generalize on unseen classes during the training step, also known as few-shot classification, has attracted considerable attention. Initialization based methods, such as the gradient-based model agnostic meta-learning (MAML) [1], tackle the few-shot learning problem by “learning to fine-tune”. The goal of these approaches is to learn proper model initialization so that the classifiers for new classes can be learned from a few labeled examples with a small number of gradient update steps. Few shot meta-learning is well-known with its fast-adapted capability and accuracy generalization onto unseen tasks [2]. Learning fairly with unbiased outcomes is another significant hallmark of human intelligence, which is rarely touched in few-shot meta-learning. In this work, we propose a novel Primal-Dual Fair Meta-learning framework, namely PDFM, which learns to train fair machine learning models using only a few examples based on data from related tasks. The key idea is to learn a good initialization of a fair model’s primal and dual parameters so that it can adapt to a new fair learning task via a few gradient update steps. Instead of manually tuning the dual parameters as hyperparameters via a grid search, PDFM optimizes the initialization of the primal and dual parameters jointly for fair meta-learning via a subgradient primal-dual approach. We further instantiate an example of bias controlling using decision boundary covariance (DBC) [3] as the fairness constraint for each task, and demonstrate the versatility of our proposed approach by applying it to classification on a variety of three real-world datasets. Our experiments show substantial improvements over the best prior work for this setting. 
    more » « less