- Award ID(s):
- 1912350
- NSF-PAR ID:
- 10349191
- Date Published:
- Journal Name:
- Atoms
- Volume:
- 9
- Issue:
- 4
- ISSN:
- 2218-2004
- Page Range / eLocation ID:
- 110
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
A bstract We study the properties of three-body resonances using a lattice complex scalar φ 4 theory with two scalars, with parameters chosen such that one heavy particle can decay into three light ones. We determine the two- and three-body spectra for several lattice volumes using variational techniques, and then analyze them with two versions of the three-particle finite-volume formalism: the Relativistic Field Theory approach and the Finite-Volume Unitarity approach. We find that both methods provide an equivalent description of the energy levels, and we are able to fit the spectra using simple parametrizations of the scattering quantities. By solving the integral equations of the corresponding three-particle formalisms, we determine the pole position of the resonance in the complex energy plane and thereby its mass and width. We find very good agreement between the two methods at different values of the coupling of the theory.more » « less
-
Abstract Tunable Fano resonances and plasmon–exciton coupling are demonstrated at room temperature in hybrid systems consisting of single plasmonic nanoparticles deposited on top of the transition metal dichalcogenide monolayers. By using single Au nanotriangles (AuNTs) on monolayer WS2as model systems, Fano resonances are observed from the interference between a discrete exciton band of monolayer WS2and a broadband plasmonic mode of single AuNTs. The Fano lineshape depends on the exciton binding energy and the localized surface plasmon resonance strength, which can be tuned by the dielectric constant of surrounding solvents and AuNT size, respectively. Moreover, a transition from weak to strong plasmon–exciton coupling with Rabi splitting energies of 100–340 meV is observed by rationally changing the surrounding solvents. With their tunable plasmon–exciton interactions, the proposed WS2–AuNT hybrids can open new pathways to develop active nanophotonic devices.
-
We investigate the Fano resonance in grating structures using coupled resonators. The grating consists of a perfectly conducting slab with periodically arranged subwavelength slit holes, where inside each period, a pair of slits sit very close to each other. The slit holes act as resonators and are strongly coupled. It is shown rigorously that there exist two groups of resonances corresponding to poles of the scattering problem. One sequence of resonances has imaginary part in the order of ε , where ε is the size of the slit aperture, while the other sequence has imaginary part in the order of ε 2 . When coupled with the incident wave at resonant frequencies, the narrow-band resonant scattering induced by the latter will interfere with the broader background resonant radiation induced by the former. The interference of these two resonances generates the Fano-type transmission anomaly, which persists in the whole radiation continuum of the grating structure as long as the slit aperture size is small compared to the incident wavelength.more » « less
-
Study of the formation mechanism for atmospheric ozone helps to understand development of planetary atmosphere. We focus on anomalous mass-independent isotope effect. To understand the nature of isotope effect we consider all stages of ozone formation with commonly used mechanism at the low pressure regime - energy transfer (Lindemann) mechanism which involves metastable intermediate state O3*. O3* is described by scattering resonance in quantum mechanics. Particularly, scattering resonances can be calculated using of stabilization method of Clary. Stabilization approach implies that eigenvalues change as a functions of stabilization parameter (extension of the grid boundary). Based on quantum mechanical calculations of scattering resonances, kinetic rate coefficients were computed. Found resonance states were used for calculation of kinetics rate coefficients such as equilibrium and recombination coefficients for three pressure regimes (0.3, 30 and 3000 atm). Influence of pressure was estimated as well as contributions of other kinetic parameters - stabilization constant weight of each resonance, rotational, vibrational and electronic partition functions for molecule 686 O3.more » « less
-
Abstract Efimov trimers are exotic three-body quantum states that emerge from the different types of three-body continua in the vicinity of two-atom Feshbach resonances. In particular, as the strength of the interaction is decreased to a critical point, an Efimov state merges into the atom-dimer threshold and eventually dissociates into an unbound atom-dimer pair. Here we explore the Efimov state in the vicinity of this critical point using coherent few-body spectroscopy in7Li atoms using a narrow two-body Feshbach resonance. Contrary to the expectation, we find that the7Li Efimov trimer does not immediately dissociate when passing the threshold, and survives as a metastable state embedded in the atom-dimer continuum. We identify this behavior with a universal phenomenon related to the emergence of a repulsive interaction in the atom-dimer channel which reshapes the three-body interactions in any system characterized by a narrow Feshbach resonance. Specifically, our results shed light on the nature of7Li Efimov states and provide a path to understand various puzzling phenomena associated with them.