Abstract Eopneumatosuchus colbertiCrompton and Smith, 1980, known from a single partial skull, is an enigmatic crocodylomorph from the Lower Jurassic Kayenta Formation. In spite of its unique morphology, an exceptionally pneumatic braincase, and presence during a critical time period of crocodylomorph evolution, relatively little is known about this taxon. Here, we redescribe the external cranial morphology ofE.colberti, present novel information on its endocranial anatomy, evaluate its phylogenetic position among early crocodylomorphs, and seek to better characterize its ecology. Our examination clarifies key aspects of cranial suture paths and braincase anatomy. Comparisons with related taxa (e.g.,Protosuchus haughtoni) demonstrate that extreme pneumaticity of the braincase may be more widespread in protosuchids than previously appreciated. Computed tomography scans reveal an endocranial morphology that resembles that of other early crocodylomorphs, in particular the noncrocodyliform crocodylomorphAlmadasuchus figarii. There are, however, key differences in olfactory bulb and cerebral hemisphere morphology, which demonstrate the endocranium of crocodylomorphs is not as conserved as previously hypothesized. Our phylogenetic analysis recoversE.colbertias a close relative ofProtosuchus richardsoniandEdentosuchus tienshanensis, contrasting with previous hypotheses of a sister group relationship with Thalattosuchia. Previous work suggested the inner ear has some similarities to semi‐aquatic crocodyliforms, but the phylogenetic placement ofE.colbertiamong protosuchids with a terrestrial postcranial skeletal morphology complicates paleoecological interpretation. 
                        more » 
                        « less   
                    
                            
                            New insights into the cranial osteology of the Early Cretaceous paracryptodiran turtle Lakotemys australodakotensis
                        
                    
    
            Lakotemys australodakotensis is an Early Cretaceous paracryptodire known from two shells and a skull from the Lakota Formation of South Dakota, USA. Along with the Early Cretaceous Arundelemys dardeni and the poorly known Trinitichelys hiatti , Lakotemys australodakotensis is generally retrieved as an early branching baenid, but more insights into the cranial anatomy of these taxa is needed to obtain a better understanding of paracryptodiran diversity and evolution. Here, we describe the skull of Lakotemys australodakotensis using micro-computed tomography to provide the anatomical basis for future phylogenetic analyses that will be needed to investigate more precisely the intrarelationships of Paracryptodira . Preliminary comparisons reveal that the cranial anatomy of Lakotemys australodakotensis is very similar to that of the Aptian-Albian basal baenid Arundelemys dardeni , that both taxa exhibit a remarkable combination of derived characters found in baenodds and characters found in non-baenid paracryptodires, particularly Pleurosternidae , and that Lakotemys australodakotensis is the only known baenid to date to possess a canal for the palatine artery. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 1925896
- PAR ID:
- 10349202
- Date Published:
- Journal Name:
- PeerJ
- Volume:
- 10
- ISSN:
- 2167-8359
- Page Range / eLocation ID:
- e13230
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Arundelemys dardeni is an Early Cretaceous paracryptodire known from a single, incomplete, but generally well-preserved skull. Phylogenetic hypotheses of paracryptodires often find Arundelemys dardeni as an early branching baenid. As such, it has a central role in understanding the early evolution of the successful clade Baenidae, which survived the Cretaceous–Paleogene mass extinction, as well as the diversification of Paracryptodira into its subclades, which recent research suggests to perhaps include helochelydrids, compsemydids, pleurosternids, and baenids. Computer tomography scans of the holotype material that were produced for the initial description of Arundelemeys dardeni reveal several errors in the initial anatomical description of the species, which we correct based on element-by-element segmentation. In addition, we provide entirely novel anatomical information, including descriptions of several previously undescribed cranial bones, the endosseous labyrinth, and the cranial scutes, the latter of which are unknown for most paracryptodires. We provide an interpretation of cranial scutes which homologizes the scutes of Arundelemys dardeni with those of other stem turtles.more » « less
- 
            Abstract A snake‐like body plan and burrowing lifestyle characterize numerous vertebrate groups as a result of convergent evolution. One such group is the amphisbaenians, a clade of limbless, fossorial lizards that exhibit head‐first burrowing behavior. Correlated with this behavior, amphisbaenian skulls are more rigid and coossified than those of nonburrowing lizards. However, due to their lifestyle, there are many gaps in our understanding of amphisbaenian anatomy, including how their cranial osteology varies among individuals of the same species and what that reveals about constraints on the skull morphology of head‐first burrowing taxa. We investigated intraspecific variation in the cranial osteology of amphisbaenians using seven individuals of the trogonophidDiplometopon zarudnyi. Variation in both skull and individual skull element morphology was examined qualitatively and quantitatively through three‐dimensional (3D) models created from microcomputed tomography data. Qualitative examination revealed differences in the number and position of foramina, the interdigitation between the frontals and parietal, and the extent of coossification among the occipital complex, fused basioccipital and parabasisphenoid (“parabasisphenoid‐basioccipital complex”), and elements X. We performed 3D landmark‐based geometric morphometrics for the quantitative assessment, revealing shape differences in the skull, premaxilla, maxilla, frontal, and parietal. The observed intraspecific variation may be the result of different stages of ontogenetic development or biomechanical optimization for head‐first burrowing. For example, variation in the coossification of the occipital region suggests a potential ontogenetic coossification sequence. Examination of these areas of variation across other head‐first burrowing taxa will help determine if the variation is clade‐specific or part of a broader macroevolutionary pattern of head‐first burrowing.more » « less
- 
            The superfamily Djadochtatherioidea is a distinctive clade of multituberculates from Upper Cretaceous beds of Mongolia and Inner Mongolia, China. Because many of the 11 included genera are known from skulls, more is known about the cranial anatomy of djadochtatherioids than any other clade of multituberculates. Within Djadochtatherioidea, the most diverse and widely accepted group is the family Djadochtatheriidae. Within the family, the basal genus, Kryptobaatar Kielan-Jaworowska, 1970, is small with a skull length of about 30 mm, whereas the other four genera, Djadochtatherium Simpson, 1925, Catopsbaatar Kielan-Jaworowska, 1994, Tombaatar Rougier et al., 1997, and Mangasbaatar Rougier et al., 2016, have skulls approximately twice as long. Here, we describe a new genus and species, Guibaatar castellanus, based on a single specimen from the Upper Cretaceous Bayan Mandahu Formation, Inner Mongolia that we refer to Djadochtatheriidae. Guibaatar is represented by a relatively complete rostrum, a partial right braincase, and partial lower jaws. As revealed by CT scanning, the specimen is a juvenile, with deciduous enlarged upper and lower incisors with permanent replacements forming, m2 erupting, and M2 forming. Based on the preserved cranial parts, we estimate the skull length to be approximately 50 mm, but as an adult, Guibaatar would have been in the size range of the larger djadochtatheriids. Phylogenetic analysis including Guibaatar, known djadochtatherioids, and outgroups places Guibaatar within Djadochtatheriidae, as sister to a clade of Mangasbaatar and Catopsbaatar. We suspect the relationships of djadochtatherioids are likely to be refined given the announcements by other researchers that skulls are known for the djadochtatheriids Tombaatar and Djadochtatherium, which were previously represented by incomplete material.more » « less
- 
            Abstract Saxochelys gilbertiis a baenid turtle from the Late Cretaceous Hell Creek Formation of the United States of America known from cranial, shell, and other postcranial material. Baenid turtles are taxonomically diverse and common fossil elements within Late Cretaceous through Eocene faunas. Detailed anatomical knowledge is critical to understanding the systematics and morphological evolution of the group. This is particularly important as baenids represent an important group of continental vertebrates that survived the mass extinction event associated with the Cretaceous/Paleogene boundary. High-resolution micro-computed tomography scanning of the holotype skull reveals additional anatomical details for the already well-knownSaxochelys gilberti. This includes the revision of some anatomical statements from the original description, but also detailed knowledge on internal anatomical features of the braincase and the description of a well-preserved axis (cervical vertebra 2). Our new detailed description and previous work on the shell and postcrania makeSaxochelysone of the best-described, nearly complete baenid turtles, which are often only known from either isolated shell or cranial material. A revised phylogenetic analysis confirms the position ofSaxochelys gilbertias a derived baenid (Eubaeninae) more closely related toBaena arenosathan toEubaena cephalica.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    