skip to main content

Title: Tracking of Dynamical Processes with Model Switching Using Temporal Convolutional Networks
This paper considers the problem of tracking and predicting dynamical processes with model switching. The classical approach to this problem has been to use an interacting multiple model (IMM) which uses multiple Kalman filters and an auxiliary system to estimate the posterior probability of each model given the observations. More recently, data-driven approaches such as recurrent neural networks (RNNs) have been used for tracking and prediction in a variety of settings. An advantage of data-driven approaches like the RNN is that they can be trained to provide good performance even when the underlying dynamic models are unknown. This paper studies the use of temporal convolutional networks (TCNs) in this setting since TCNs are also data-driven but have certain structural advantages over RNNs. Numerical simulations demonstrate that a TCN matches or exceeds the performance of an IMM and other classical tracking methods in two specific settings with model switching: (i) a Gilbert-Elliott burst noise communication channel that switches between two different modes, each modeled as a linear system, and (ii) a maneuvering target tracking scenario where the target switches between a linear constant velocity mode and a nonlinear coordinated turn mode. In particular, the results show that the TCN tends to more » identify a mode switch as fast or faster than an IMM and that, in some cases, the TCN can perform almost as well as an omniscient Kalman filter with perfect knowledge of the current mode of the dynamical system. « less
Authors:
; ; ; ; ;
Award ID(s):
1836695
Publication Date:
NSF-PAR ID:
10349348
Journal Name:
2021 IEEE Aerospace Conference
Page Range or eLocation-ID:
1 to 9
Sponsoring Org:
National Science Foundation
More Like this
  1. The development of data-informed predictive models for dynamical systems is of widespread interest in many disciplines. We present a unifying framework for blending mechanistic and machine-learning approaches to identify dynamical systems from noisily and partially observed data. We compare pure data-driven learning with hybrid models which incorporate imperfect domain knowledge, referring to the discrepancy between an assumed truth model and the imperfect mechanistic model as model error. Our formulation is agnostic to the chosen machine learning model, is presented in both continuous- and discrete-time settings, and is compatible both with model errors that exhibit substantial memory and errors that are memoryless. First, we study memoryless linear (w.r.t. parametric-dependence) model error from a learning theory perspective, defining excess risk and generalization error. For ergodic continuous-time systems, we prove that both excess risk and generalization error are bounded above by terms that diminish with the square-root of T T , the time-interval over which training data is specified. Secondly, we study scenarios that benefit from modeling with memory, proving universal approximation theorems for two classes of continuous-time recurrent neural networks (RNNs): both can learn memory-dependent model error, assuming that it is governed by a finite-dimensional hidden variable and that, together, the observedmore »and hidden variables form a continuous-time Markovian system. In addition, we connect one class of RNNs to reservoir computing, thereby relating learning of memory-dependent error to recent work on supervised learning between Banach spaces using random features. Numerical results are presented (Lorenz ’63, Lorenz ’96 Multiscale systems) to compare purely data-driven and hybrid approaches, finding hybrid methods less datahungry and more parametrically efficient. We also find that, while a continuous-time framing allows for robustness to irregular sampling and desirable domain- interpretability, a discrete-time framing can provide similar or better predictive performance, especially when data are undersampled and the vector field defining the true dynamics cannot be identified. Finally, we demonstrate numerically how data assimilation can be leveraged to learn hidden dynamics from noisy, partially-observed data, and illustrate challenges in representing memory by this approach, and in the training of such models.« less
  2. Learning how to effectively control unknown dynamical systems from data is crucial for intelligent autonomous systems. This task becomes a significant challenge when the underlying dynamics are changing with time. Motivated by this challenge, this paper considers the problem of controlling an unknown Markov jump linear system (MJS) to optimize a quadratic objective in a data-driven way. By taking a model-based perspective, we consider identification-based adaptive control for MJS. We first provide a system identification algorithm for MJS to learn the dynamics in each mode as well as the Markov transition matrix, underlying the evolution of the mode switches, from a single trajectory of the system states, inputs, and modes. Through mixing-time arguments, sample complexity of this algorithm is shown to be O(1/T−−√). We then propose an adaptive control scheme that performs system identification together with certainty equivalent control to adapt the controllers in an episodic fashion. Combining our sample complexity results with recent perturbation results for certainty equivalent control, we prove that when the episode lengths are appropriately chosen, the proposed adaptive control scheme achieves O(T−−√) regret. Our proof strategy introduces innovations to handle Markovian jumps and a weaker notion of stability common in MJSs. Our analysis provides insightsmore »into system theoretic quantities that affect learning accuracy and control performance. Numerical simulations are presented to further reinforce these insights.« less
  3. We are developing a system for long term Semi-Automated Rehabilitation At the Home (SARAH) that relies on low-cost and unobtrusive video-based sensing. We present a cyber-human methodology used by the SARAH system for automated assessment of upper extremity stroke rehabilitation at the home. We propose a hierarchical model for automatically segmenting stroke survivor's movements and generating training task performance assessment scores during rehabilitation. The hierarchical model fuses expert therapist knowledge-based approaches with data-driven techniques. The expert knowledge is more observable in the higher layers of the hierarchy (task and segment) and therefore more accessible to algorithms incorporating high level constraints relating to activity structure (i.e., type and order of segments per task). We utilize an HMM and a Decision Tree model to connect these high level priors to data driven analysis. The lower layers (RGB images and raw kinematics) need to be addressed primarily through data driven techniques. We use a transformer based architecture operating on low-level action features (tracking of individual body joints and objects) and a Multi-Stage Temporal Convolutional Network(MS-TCN) operating on raw RGB images. We develop a sequence combining these complimentary algorithms effectively, thus encoding the information from different layers of the movement hierarchy. Through this combination,more »we produce a robust segmentation and task assessment results on noisy, variable and limited data, which is characteristic of low cost video capture of rehabilitation at the home. Our proposed approach achieves 85% accuracy in per-frame labeling, 99% accuracy in segment classification and 93% accuracy in task completion assessment. Although the methodology proposed in this paper applies to upper extremity rehabilitation using the SARAH system, it can potentially be used, with minor alterations, to assist automation in many other movement rehabilitation contexts (i.e., lower extremity training for neurological accidents).« less
  4. This paper explores the challenges in developing an inexpensive on-bicycle sensing system to track vehicles at a traffic intersection. In particular, opposing traffic with vehicles that can travel straight or turn left are considered. The estimated vehicle trajectories can be used for collision prevention between bicycles and left-turning vehicles. A compact solid-state 2-D low-density Lidar is mounted at the front of a bicycle to obtain distance measurements from vehicles. Vehicle tracking can be achieved by clustering based approaches for assigning measurement points to individual vehicles, introducing a correction term for position measurement refinement, and by exploiting data association and interacting multiple model Kalman filtering approaches for multi-target tracking. The tracking performance of the developed system is evaluated by both simulation and experimental results. Two types of scenarios that involve straight driving and left turning vehicles are considered. Experimental results show that the developed system can successfully track cars in these scenarios accurately in spite of the low measurement density of the sensor.
  5. Abstract This paper is concerned with solving, from the learning-based decomposition control viewpoint, the problem of output tracking with nonperiodic tracking–transition switching. Such a nontraditional tracking problem occurs in applications where sessions for tracking a given desired trajectory are alternated with those for transiting the output with given boundary conditions. It is challenging to achieve precision tracking while maintaining smooth tracking–transition switching, as postswitching oscillations can be induced due to the mismatch of the boundary states at the switching instants, and the tracking performance can be limited by the nonminimum-phase (NMP) zeros of the system and effected by factors such as input constraints and external disturbances. Although recently an approach by combining the system-inversion with optimization techniques has been proposed to tackle these challenges, modeling of the system dynamics and complicated online computation are needed, and the controller obtained can be sensitive to model uncertainties. In this work, a learning-based decomposition control technique is developed to overcome these limitations. A dictionary of input–output bases is constructed offline a priori via data-driven iterative learning first. The input–output bases are used online to decompose the desired output in the tracking sessions and design an optimal desired transition trajectory with minimal transition timemore »under input-amplitude constraint. Finally, the control input is synthesized based on the superpositioning principle and further optimized online to account for system variations and external disturbance. The proposed approach is illustrated through a nanopositioning control experiment on a piezoelectric actuator.« less